首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification.  相似文献   

2.
硝态氮异化还原机制及其主导因素研究进展   总被引:12,自引:0,他引:12  
硝态氮(NO_3~-)异化还原过程通常包含反硝化和异化还原为铵(DNRA)两个方面,是土壤氮素转化的重要途径,其强度大小直接影响着硝态氮的利用和环境效应(如淋溶和氮氧化物气体排放)。反硝化和DNRA过程在反应条件、产物和影响因素等方面常会呈现出协同与竞争的交互作用机制。综述了反硝化和DNRA过程的研究进展及其二者协同竞争的作用机理,并阐述了在NO_3~-、pH、有效C、氧化还原电位(Eh)等环境条件和土壤微生物对其发生强度和产物的影响,提出了今后应在产生机理、土壤环境因素、微生物学过程以及与其他氮素转化过程耦联作用等方面亟需深入研究,以期增进对氮素循环过程的认识以及为加强氮素管理利用提供依据。  相似文献   

3.
The processes involved in nitrate metabolism in Halobacterium of the Dead Sea are part of a dissimilatory pathway operating in these bacteria. The induction of both nitrate and nitrite reductases is shown to depend on the presence of nitrate and of anaerobic conditions. The gas products of the denitrification process were identified as nitrous oxide and nitrogen. Some properties of two of the enzymes involved in this process, nitrate and nitrite reductases, are reported. It is shown that the 2 Feferredoxin, which is present in large quantities in Halobacterium of the Dead Sea, can serve as an electron donor for nitrite reduction by nitrite reductase. It is suggested that the presence of a dissimilatory pathway for the reduction of nitrate in Halobacterium of the Dead Sea can be used as a tool for its classification.  相似文献   

4.
During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation.  相似文献   

5.
The effect of sulfide on nitrate reduction and methanogenesis was investigated in two mixed, mesophilic (35 degrees C) methanogenic cultures: sulfide-free and sulfide-acclimated (67 mg S/L total sulfide). A mixture of dextrin/peptone served as the carbon/electron donor source for the two stock cultures, as well as in all assays reported here. The sulfide-free enriched culture was amended with both nitrate (75-350 mg N/L) and sulfide (10-100 mg S/L). Denitrification was the predominant pathway at all sulfide levels tested and methanogenesis did not recover in any of the sulfide- and nitrate-amended cultures, except in the 10 mg S/L culture. Accumulation of denitrification intermediates such as NO and N(2)O took place, which irreversibly inhibited the methanogens and resulted in the complete cessation of methane production. In contrast, conversion of nitrate to nitrite and then to ammonia via dissimilatory nitrate reduction to ammonia (DNRA) prevented the accumulation of denitrification intermediates and led to the recovery of methanogenesis in the nitrate-amended, sulfide-acclimated, mixed methanogenic culture. The effect of the COD/N value on nitrate reduction was assessed with the sulfide-acclimated, methanogenic culture at COD/N values of 10, 20, and 60. As the COD/N value increased, the fraction of nitrate reduced through DNRA also increased. The results of this study have significant implications relative to the combined anaerobic treatment of carbon-, nitrogen-, and/or sulfur-bearing wastes.  相似文献   

6.
真菌异化硝酸盐还原机理的研究进展   总被引:1,自引:0,他引:1  
真菌异化硝酸盐还原途径的发现打破了反硝化仅存在于原核细胞这一传统观念。真菌异化硝酸盐还原途径是在环境中氧供给受限的情况下发生的, 包括反硝化和氨的发酵。硝酸盐能诱导产生反硝化作用的酶, 其中, 硝酸盐还原酶与亚硝酸还原酶位于线粒体中, 它们所催化的酶促反应能偶联呼吸链ATP合成酶合成ATP, 同时产生NO。与参与反硝化作用前两个酶不同, 真菌NO还原酶能以NADH为直接电子供体将NO还原为N2O, 在NAD+的再生和自由基NO的脱毒中起着重要作用。氨发酵则将硝酸盐还原成NH4+, 同时偶联乙酸的生成和底物水平磷酸化。此文从参与该过程的关键酶、关键酶的表达调节、真菌与细菌异化硝酸盐还原的比较等角度综述了真菌异化硝酸盐还原的最新研究进展。  相似文献   

7.
Bedzyk L  Wang T  Ye RW 《Journal of bacteriology》1999,181(9):2802-2806
Both membrane-bound and periplasmic nitrate reductases have been found in denitrifying bacteria. Yet the role of periplasmic nitrate reductase in denitrification has not been clearly defined. To analyze the function of the periplasmic nitrate reductase in Pseudomonas sp. strain G-179, the nap gene cluster was identified and found to be linked to genes involved in reduction of nitrite and nitric oxide and anaerobic heme biosynthesis. Mutation in the nap region rendered the cells incapable of growing under anaerobic conditions with nitrate as the alternative electron acceptor. No nitrate reduction activity was detected in the Nap- mutant, but that activity could be restored by complementation with the nap region. Unlike the membrane-bound nitrate reductase, the nitrate reduction activity in strain G-179 was not inhibited by a low concentration of azide. Nor could it use NADH as the electron donor to reduce nitrate or use chlorate as the alternative substrate. These results suggest that the periplasmic nitrate reductase in this strain plays a primary role in dissimilatory nitrate reduction.  相似文献   

8.
Human activities have decreased global salt marsh surface area with a subsequent loss in the ecosystem functions they provide. The creation of marshes in terrestrial systems has been used to mitigate this loss in marsh cover. Although these constructed marshes may rapidly recover ecosystem structure, biogeochemical processes may be slow to recover. We compared denitrification and dissimilatory nitrate reduction to ammonium (DNRA) rates between a 32‐year‐old excavation‐created salt marsh (CON‐2) and a nearby natural reference salt marsh (NAT) to assess the recovery of ecosystem function. These process rates were measured at 5 cm increments to a depth of 25 cm to assess how plant rooting depth and organic matter accumulation impact N‐cycling. We found that, for both marshes, denitrification and DNRA declined with depth with the highest rates occurring in the top 10 cm. In both systems, N‐retention by DNRA accounted for upwards of 75% of nitrate reduction, but denitrification and DNRA rates were nearly 2× and 3× higher in NAT than CON‐2, respectively. Organic matter was 6× lower in CON‐2, likely due to limited plant belowground biomass production. However, there was no response to glucose additions, suggesting that the microbial functional community, not substrate limitation, limited nitrate reduction recovery. Response ratios showed that denitrification in CON‐2 recovered in surficial sediments where belowground biomass was highest, even though biomass recovery was minimal. This indicates that although recovery of ecosystem function was constrained, it occurred on a faster trajectory than that of ecosystem structure.  相似文献   

9.
Graphite electrodes as electron donors for anaerobic respiration   总被引:8,自引:0,他引:8  
It has been demonstrated previously that Geobacter species can transfer electrons directly to electrodes. In order to determine whether electrodes could serve as electron donors for microbial respiration, enrichment cultures were established from a sediment inoculum with a potentiostat-poised graphite electrode as the sole electron donor and nitrate as the electron acceptor. Nitrate was reduced to nitrite with the consumption of electrical current. The stoichiometry of electron and nitrate consumption and nitrite accumulation were consistent with the electrode serving as the sole electron donor for nitrate reduction. Analysis of 16 rRNA gene sequences demonstrated that the electrodes supplied with current were specifically enriched in microorganisms with sequences most closely related to the sequences of known Geobacter species. A pure culture of Geobacter metallireducens was shown to reduce nitrate to nitrite with the electrode as the sole electron donor with the expected stoichiometry of electron consumption. Cells attached to the electrode appeared to be responsible for the nitrate reduction. Attached cells of Geobacter sulfurreducens reduced fumarate to succinate with the electrode as an electron donor. These results demonstrate for the first time that electrodes may serve as a direct electron donor for anaerobic respiration. This finding has implications for the harvesting of electricity from anaerobic sediments and the bioremediation of oxidized contaminants.  相似文献   

10.
The effect of different electron donors on the pathway and kinetics of nitrate reduction in a sulfide-acclimated mixed, mesophilic (35 degrees C) methanogenic culture was investigated. A mixture of dextrin and peptone, glucose, propionate, acetate, and H(2)/CO(2) were used as substrates at an initial chemical oxygen demand of 1,500 mg/L and the initial nitrate concentration ranged between 0 and 300 mg N/L. The fastest nitrate reduction was observed in the H(2)/CO(2) and acetate-fed cultures. In the case of propionate, nitrate reduction was the slowest followed by partial recovery of methanogenesis and accumulation of volatile fatty acids due to inhibition as a result of accumulation of denitrification intermediates. Similarly, accumulation of nitrite and nitric oxide and partial or complete inhibition of methanogenesis was observed in the H(2)/CO(2)-fed cultures. Methanogenesis completely recovered in the dextrin/peptone-, glucose-, and acetate-fed cultures at all nitrate levels. Denitrification was the dominant pathway of nitrate reduction in the propionate-, acetate-, and H(2)/CO(2)-fed cultures regardless of the COD/N value. However, both denitrification and dissimilatory nitrate reduction to ammonia (DNRA) were observed in the dextrin/peptone- and glucose-fed cultures and the degree of predominance of either of the two pathways was a function of the COD/N value. Therefore, the type of electron donor used affected both the nitrate reduction pathway and kinetics, as well as the recovery of fermentation and/or methanogenesis in the mixed methanogenic culture.  相似文献   

11.
【背景】好氧反硝化是指在有氧条件下进行反硝化作用,使得硝化和反硝化过程能够在同一反应器中同时发生,是废水脱氮最具竞争力的技术。红树林湿地中蕴藏着丰富的微生物资源,分布着大量好氧反硝化微生物。【目的】了解耐盐微生物的脱氮机制,为含盐废水生物脱氮的工程实践提供理论依据,对一株分离于红树林湿地中的耐盐好氧细菌A63的硝酸盐异化还原能力进行分析。【方法】利用形态学特征及16S rRNA基因序列测定分析,对其种属进行了鉴定,采用单因子实验测定该菌在不同环境因子下的硝酸盐还原能力,并对其反硝化脱氮条件进行了优化。【结果】初步判定该菌株为卓贝儿氏菌(Zobellellasp.),其能在盐度0%-10%、pH5.0-10.0、温度20-40°C范围内进行反硝化脱氮和硝酸盐异化还原为氨(dissimilatorynitratereductiontoammonium,DNRA)作用。菌株A63最适生长碳源为柠檬酸钠(1.2 g/L),适宜脱氮盐度为3%、pH 7.0-7.5、温度30-35°C,且C/N为10。在最适脱氮条件下,该菌株12h内能将培养基中208.8mg/L硝态氮降至0,且仅有少量铵态氮生成,无亚硝态氮积累,脱氮率高达99%。此外,该菌株在高盐度、低C/N比、弱酸性和低温等不利生境中DNRA作用显著。【结论】细菌A63生长范围宽,脱氮效率显著,适用于海水养殖废水处理。研究为今后开发高效含盐废水生物脱氮工艺奠定了基础,对于加深氮素转化规律的认识、丰富生物脱氮理论有着重要意义。  相似文献   

12.
Diatoms are among the few eukaryotes known to store nitrate (NO3) and to use it as an electron acceptor for respiration in the absence of light and O2. Using microscopy and 15N stable isotope incubations, we studied the relationship between dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and diel vertical migration of diatoms in phototrophic microbial mats and the underlying sediment of a sinkhole in Lake Huron (USA). We found that the diatoms rapidly accumulated NO3 at the mat-water interface in the afternoon and 40% of the population migrated deep into the sediment, where they were exposed to dark and anoxic conditions for ~75% of the day. The vertical distribution of DNRA rates and diatom abundance maxima coincided, suggesting that DNRA was the main energy generating metabolism of the diatom population. We conclude that the illuminated redox-dynamic ecosystem selects for migratory diatoms that can store nitrate for respiration in the absence of light. A major implication of this study is that the dominance of DNRA over denitrification is not explained by kinetics or thermodynamics. Rather, the dynamic conditions select for migratory diatoms that perform DNRA and can outcompete sessile denitrifiers.  相似文献   

13.
Dissimilatory reduction of ionic nitrogen oxides to gaseous forms such as nitrous oxide or nitrogen can be carried out by free living or symbiotic forms of some strains of Rhizobium meliloti. In this paper we investigate whether bacteroid denitrification plays a role in the alleviation of the inhibitory effects of nitrate on nitrogen fixation both in bacteroid incubations as in whole nodules. The presence of a constitutive nitrate reductase (NR) activity in isolated bacteroids caused nitrite accumulation in the incubation medium, and acetylene reduction activity in these bacteroids was progressively inhibited, since nitrite reductase (NiR) activity was unable to reduce all the nitrite produced by NR and denitrification occurred slowly. Even nodules infiltrated with nitrate and nitrite failed to increase gaseous forms of nitrogen substantially, indicating that nitrite availability was not limiting denitrification by bacteroids. In spite of the low rates of bacteroidal denitrification, the effect of nodule denitrification on the inhibition of nitrogen fixation by nitrate in whole plants was tested. For that purpose, lucerne plants (Medicago sativa L. cv. Aragon) were inoculated with two Rhizobium meliloti strains: 102-F-65 (non denitrifying) and 102-F-51 (a highly denitrifying strain). After a seven days nitrate treatment, both strains showed the same pattern of inhibition, and it occurred before any nitrate or nitrite accumulation within the nodules could be detected. This observation, together with the lack of alleviation of the ARA inhibition in the denitrifying strain, and the limited activity of dissimilatory nitrogen reduction present in these bacteroids, indicate a role other than nitrite detoxification for denitrification in nodules under natural conditions.  相似文献   

14.
Abstract: Different reduced sulfur compounds (H2S, FeS, S2O32−) were tested as electron donors for dissimilatory nitrate reduction in nitrate-amended sediment slurries. Only in the free sulfide-enriched slurries was nitrate appreciably reduced to ammonia (     ), with concomitant oxidation of sulfide to S0 (     ). The initial concentration of free sulfide appears as a factor determining the type of nitrate reduction. At extremely low concentrations of free S2− (metal sulfides) nitrate was reduced via denitrification whereas at higher S2− concentrations, dissimilatory nitrate reduction to ammonia (DNRA) and incomplete denitrification to gaseous nitrogen oxides took place. Sulfide inhibition of NO- and N2O- reductases is proposed as being responsible for the driving part of the electron flow from S2− to NH4+.  相似文献   

15.
Intensive agriculture leads to increased nitrogen fluxes (mostly as nitrate, NO3 ?) to aquatic ecosystems, which in turn creates ecological problems, including eutrophication and associated harmful algal blooms. These problems have focused scientific attention on understanding the controls on nitrate reduction processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Our objective was to determine the effects of nutrient-tolerant bioturbating invertebrates (tubificid oligochaetes) on nitrogen cycling processes, specifically coupled nitrification–denitrification, net denitrification, DNRA, and biogeochemical fluxes (O2, NO3 ?, NH4 +, CO2, N2O, and CH4) in freshwater sediments. A mesocosm experiment determined how tubificid density and increasing NO3 ? concentrations (using N15 isotope tracing) interact to affect N cycling processes. At the lowest NO3 ? concentration and in the absence of bioturbation, the relative importance of denitrification to DNRA was similar (i.e., 49.6 and 50.4 ± 8.1 %, respectively). Increasing NO3 ? concentrations in the control cores (without fauna) stimulated denitrification, but did not enhance DNRA, which significantly altered the relative importance of denitrification compared to DNRA (94.6 vs. 5.4 ± 0.9 %, respectively). The presence of tubificid oligochaetes enhanced O2, NO3 ?, NH4 + fluxes, greenhouse gas production, and N cycling processes. The relative importance of denitrification to DNRA shifted towards favoring denitrification with both the increase in NO3 ? concentrations and the increase of bioturbation activity. Our study highlights that understanding the interactions between nutrient-tolerant bioturbating species and nitrate contamination is important for determining the nitrogen removal capacity of eutrophic freshwater ecosystems.  相似文献   

16.
Many actinomycete strains are able to convert nitrate or nitrite to nitrous oxide (N2O). As a representative of actinomycete denitrification systems, the system of Streptomyces thioluteus was investigated in detail. S. thioluteus attained distinct cell growth upon anaerobic incubation with nitrate or nitrite with concomitant and stoichiometric conversion of nitrate or nitrite to N2O, suggesting that the denitrification acts as anaerobic respiration. Furthermore, a copper-containing, dissimilatory nitrite reductase (CuNir) and its physiological electron donor, azurin, were isolated. This is the first report to show that denitrification generally occurs among actinomycetes.  相似文献   

17.
Wong BT  Lee DJ 《Bioresource technology》2011,102(3):2427-2432
The effects of sulfide on nitrate reduction and methanogenesis using butyrate as a carbon source were investigated in a mixed mesophilic, methanogenic culture. In the sulfide-free medium, 25-75 mg l−1 nitrate markedly inhibited the efficiencies of acetogenesis and methanogenesis processes. Adding 25 mg-S l−1 increased methane production in nitrate-amended medium. Low sulfide levels shifted the nitrate reduction pathway from denitrification to dissimilatory nitrate reduction to ammonia (DNRA), thereby reducing the amounts of toxic nitric oxide and nitrous oxide produced that inhibit methanogenesis. The dose of 25 mg l−1 sulfide was oxidized completely, during which heterotrophic DNRA predominated. The oxidized forms of sulfide reformed, limiting induction of the heterotrophic denitrification pathway. The actions of heterotrophic and autotrophic DNRA bacteria, denitrifiers, sulfate-reducing bacteria and methanogens mitigate nitrate toxicity during methanogenesis in an anaerobic process.  相似文献   

18.
15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.  相似文献   

19.
Dissimilatory nitrate reduction by Propionibacterium acnes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH strongly influenced the products of dissimilatory nitrate reduction. Nitrate was principally converted to nitrite at alkaline pH, whereas nitrous oxide was the major product of nitrate reduction when the bacteria were grown at pH 6.0. Growth yields were increased by nitrate in electron acceptor-limited chemostats, where nitrate was reduced to nitrite, showing that dissimilatory nitrate reduction was an energetically favorable process in P. acnes. Nitrate had little effect on the amounts of fermentation products formed, but molar ratios of acetate to propionate were higher in the nitrate chemostats. Low concentrations of nitrite (ca. 0.2 mM) inhibited growth of P. acnes in batch culture. The nitrite was slowly reduced to nitrous oxide, enabling growth to occur, suggesting that denitrification functions as a detoxification mechanism.  相似文献   

20.
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH strongly influenced the products of dissimilatory nitrate reduction. Nitrate was principally converted to nitrite at alkaline pH, whereas nitrous oxide was the major product of nitrate reduction when the bacteria were grown at pH 6.0. Growth yields were increased by nitrate in electron acceptor-limited chemostats, where nitrate was reduced to nitrite, showing that dissimilatory nitrate reduction was an energetically favorable process in P. acnes. Nitrate had little effect on the amounts of fermentation products formed, but molar ratios of acetate to propionate were higher in the nitrate chemostats. Low concentrations of nitrite (ca. 0.2 mM) inhibited growth of P. acnes in batch culture. The nitrite was slowly reduced to nitrous oxide, enabling growth to occur, suggesting that denitrification functions as a detoxification mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号