首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystallographic methods have been applied to determine the high-resolution structure of the complex formed between the self-complementary oligonucleotide d(TGTACA) and the anthracycline antibiotic 4'-epiadriamycin. The complex crystallises in the tetragonal system, space group P4(1)2(1)2 with a = 2.802 nm and c = 5.293 nm, and an asymmetric unit consisting of a single DNA strand, one drug molecule and 34 solvent molecules. The refinement converged with an R factor of 0.17 for the 2381 reflections with F greater than or equal to 3 sigma F in the resolution range 0.70-0.14 nm. Two asymmetric units associate such that a distorted B-DNA-type hexanucleotide duplex is formed incorporating two drug molecules that are intercalated at the TpG steps. The amino sugar of 4'-epiadriamycin binds in the minor groove of the duplex and displays different interactions from those observed in previously determined structures. Interactions between the hydrophilic groups of the amino sugar and the oligonucleotide are all mediated by solvent molecules. Ultraviolet melting measurements and comparison with other anthracycline-DNA complexes suggest that these indirect interactions have a powerful stabilising effect on the complex.  相似文献   

2.
The anticancer drug daunomycin has been co-crystallized with the hexanucleotide duplex sequences d(TGTACA) and d(TGATCA) and single crystal X-ray diffraction studies of these two complexes have been carried out. Structure solution of the d(TGTACA) and d(TGATCA) complexes to 1.6 and 1.7 Angstrom resolution, respectively, shows two daunomycin molecules bound to the DNA hexamer. Binding occurs via intercalation of the drug chromophore at the d(TpG) step, and hydrogen bonding interactions involving the drug, DNA and solvent molecules. The daunomycin sugar is located in the minor groove of the DNA hexamer and is stabilized by hydrogen bonds between the amino group of the sugar and functional groups on the floor of the groove. The amino sugar of the d(TGATCA) duplex interacts directly with the DNA sequence, while in the d(TGTACA) duplex, the interaction is via solvent molecules. Two other complexes d(CGTACG)-daunomycin and d(CGATCG)-daunomycin have previously been structurally characterized. Comparison of the four structures with daunomycin bound to the triplet sequences 5'TGT, 5'TGA, 5'CGT and 5'CGA reveals changes in the conformation of both the DNA hexamer and the daunomycin upon complexation, as well as the hydrogen bonding and van der Waals' interactions.  相似文献   

3.
The structure of d(CGCGm4CG) were m4C = N4-methylcytosine has been determined by crystallographic methods. The crystals are multifaced prisms, with orthorhombic space group P2(1)2(1)2(1) and unit cell dimensions of a = 17.98, b = 30.77 and c = 44.75A. The asymmetric unit consists of one duplex of hexanucleotide and 49 waters. The R-factor is 0.189 for 1495 reflections with F > or = sigma(F) to a resolution limit of 1.8A. The double helix has a Z-DNA type structure which appears to be intermediate in structure to the two previously characterised structure types for Z-DNA hexamers. The two m4C.G base-pairs adopt structures that are very similar to those of the equivalent base-pairs in the structure of the native sequence d(CGCGCG) except for the presence of the methyl groups which are trans to the N3 atoms of their parent nucleotides and protrude into the solvent region. The introduction of the modified base-pairs into the d(CGCGCG) duplex appears to have a minimal effect on the overall base-pair morphology of the Z-DNA duplex.  相似文献   

4.
The recently developed anthracycline 4'-epiadriamycin, an anti-cancer drug with improved activity, differs from adriamycin by inversion of the stereochemistry at the 4'-position. We have cocrystallized 4'-epiadriamycin with the DNA hexamer d(CGATCG) and solved the structure to 1.5 A resolution using x-ray crystallography. One drug molecule binds at each d(CG) step of the hexamer duplex. The anthracycline sugar binds in the minor groove. A feature of this complex which distinguishes it from the earlier DNA:adriamycin complex is a direct hydrogen bond from the 4'-hydroxyl group of the anthracycline sugar to the adenine N3 on the floor of the DNA minor groove. This hydrogen bond results directly from inversion of the stereochemistry at the 4'-position. Spermine molecules bind in the major groove of this complex. In anthracycline complexes with d(CGATCG) a spermine molecule binds to a continuous hydrophobic zone formed by the 5-methyl and C6 of a thymidine, C5 and C6 of a cytidine and the chromophore of the anthracycline. This report discusses three anthracycline complexes with d(CGATCG) in which the spermine molecules have different conformations yet form extensive van der Waals contacts with the same hydrophobic zone. Our results suggest that these hydrophobic interactions of spermine are DNA sequence specific and provide insight into the question of whether DNA:spermine complexes are delocalized and dynamic or site-specific and static.  相似文献   

5.
4'-Deoxy-4'-iododoxorubicin, a halogenated anthracycline derivative, is an anticancer agent currently under Phase II clinical trials. In preclinical studies, it has demonstrated significantly reduced levels of cardiotoxicity compared to currently employed anthracyclines. It also has modified pharmacological properties resulting in an altered spectrum of experimental antitumor activity. The iodine atom at the 4' position of the sugar ring reduces the basicity and enhances the lipophilicity of this compound as compared to related anthracycline drugs. We report here single crystal X-ray diffraction studies of the complexes of 4'-deoxy-4'-iododoxorubicin with the hexanucleotide duplex sequences d(TGTACA) and d(CGATCG) at 1.6 and 1.5 A, respectively. The iodine substituent does not alter the geometry of intercalation as compared to previously solved anthracycline complexes, but appears to markedly affect the solvent environment of the structures. This could have consequences for the interaction of this drug with DNA and DNA binding proteins in cells.  相似文献   

6.
The X-ray crystal structure of the complex between the anthracycline idarubicin and d(CGATCG) has been solved by molecular replacement and refined to a resolution of 2.0 A. The final R-factor is 0.19 for 3768 reflections with Fo > or = 2 sigma (Fo). The complex crystallizes in the trigonal space group P31 with unit cell parameters a = b = 52.996(4), c = 33.065(2) A, alpha = beta = 90 degree, gamma = 120 degree. The asymmetric unit consists of two duplexes, each one being complexed with two idarubicin drugs intercalated at the CpG steps, one spermine and 160 water molecules. The molecular packing underlines major groove-major groove interactions between neighbouring helices, and an unusually low value of the occupied fraction of the unit cell due to a large solvent channel of approximately 30 A diameter. This is the first trigonal crystal form of a DNA-anthracycline complex. The structure is compared with the previously reported structure of the same complex crystallizing in a tetragonal form. The geometry of both the double helices and the intercalation site are conserved as are the intramolecular interactions despite the different crystal forms.  相似文献   

7.
Equilibrium systems containing intercalation complexes formed between the novel anthracycline drug, 3-fluoro-4-demethoxydaunomycin (3FD), and the hexanucleotide duplex d(CTGCAG)2 have been studied by 19F-NMR spectroscopy. Solutions containing a 1:1 molar ratio of 3FD/d(CTGCAG)2 gave four 19F signals which have been assigned to each of four possible intercalation isomers for the 1:1 3FD.d(CTGCAG)2 complex, which we denote by [d(CTGCAG)2][3FD]; these were where 3FD bound between the 5'-CT-3', 5'-TG-3', 5'-GC-3' or 5'-CA-3' base sequences, with the drug sugar moiety lying in the minor groove and pointed in the 3' direction in each case. Changes in temperature and NaCl concentration affecting the equilibrium distribution of these isomers were studied and indicated that no overriding binding site preference prevailed under standard biochemical conditions. Formation of some of the 2:1 3FD.d(CTGCAG)2 complex occurred when a solution of [d(CTGCAG)2][3FD] was exposed to excess 3FD; however, this complex was unstable to gel filtration and no co-operative binding of the second 3FD molecule was observed.  相似文献   

8.
The structures of the complexes formed between 9-amino-[N-(2-dimethyl-amino)butyl]acridine-4-carboxamide and d(CG5BrUACG)2 and d(CGTACG)2 have been solved by X-ray crystallography using MAD phasing methodology and refined to a resolution of 1.6 Å. The complexes crystallised in space group C222. An asymmetric unit in the brominated complex comprises two strands of DNA, one disordered drug molecule, two cobalt (II) ions and 19 water molecules (31 in the native complex). Asymmetric units in the native complex also contain a sodium ion. The structures exhibit novel features not previously observed in crystals of DNA/drug complexes. The DNA helices stack in continuous columns with their central 4 bp adopting a B-like motif. However, despite being a palindromic sequence, the terminal GC base pairs engage in quite different interactions. At one end of the duplex there is a CpG dinucleotide overlap modified by ligand intercalation and terminal cytosine exchange between symmetry-related duplexes. A novel intercalation complex is formed involving four DNA duplexes, four ligand molecules and two pairs of base tetrads. The other end of the DNA is frayed with the terminal guanine lying in the minor groove of the next duplex in the column. The structure is stabilised by guanine N7/cobalt (II) coordination. We discuss our findings with respect to the effects of packing forces on DNA crystal structure, and the potential effects of intercalating agents on biochemical processes involving DNA quadruplexes and strand exchanges. NDB accession numbers: DD0032 (brominated) and DD0033 (native).  相似文献   

9.
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 A resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C(3)H(10)N(2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.  相似文献   

10.
Binding configurations and equilibria of intercalation complexes formed by the novel anthracycline drug, 2-fluoro-4-demethoxydaunomycin (2FD), with the decanucleotides d(G-C)5 and d(A-T)5 have been studied by 19F-NMR spectroscopy. The 19F chemical shift of 2FD bound to d(A-T)5 was approximately 1.5 ppm downfield of that observed for 2FD bound to d(G-C)5. By mixing equimolar amounts of aqueous d(G-C)5, d(A-T)5 and 2FD, the distribution of drug between the nucleotides was followed by observing relative peak intensities and showed no G-C or A-T binding preference at room temperature. It was shown that each decanucleotide duplex bound three 2FD molecules, giving a neighbour exclusion parameter, n, of n = 3 for this drug. The stoichiometric complexes, which we denote by [d(A-T)5][2FD]3 and [d(G-C)5][2FD]3, were also purified and isolated in this study.  相似文献   

11.
Crystal and molecular structure of a DNA fragment: d(CGTGAATTCACG)   总被引:5,自引:0,他引:5  
The crystal structure of the dodecanucleotide d(CGTGAATTCACG) has been determined to a resolution of 2.7 A and refined to an R factor of 17.0% for 1532 reflections. The sequence crystallizes as a B-form double helix, with Watson-Crick base pairing. This sequence contains the EcoRI restriction endonuclease recognition site, GAATTC, and is flanked by CGT on the 5'-end and ACG on the 3'-end, in contrast to the CGC on the 5'-end and GCG on the 3'-end in the parent dodecamer d(CGCGAATTCGCG). A comparison with the isomorphous parent compound shows that any changes in the structure induced by the change in the sequence in the flanking region are highly localized. The global conformation of the duplex is conserved. The overall bend in the helix is 10 degrees. The average helical twist values for the present and the parent structures are 36.5 degrees and 36.4 degrees, respectively, corresponding to 10 base pairs per turn. The buckle at the substituted sites are significantly different from those seen at the corresponding positions in the parent dodecamer. Step 2 (GpT) is underwound with respect to the parent structure (27 degrees vs 36 degrees) and step 3 (TpG) is overwound (34 degrees vs 27 degrees). There is a spine of hydration in the narrow minor groove. The N3 atom of adenine on the substituted A10 and A22 bases are involved in the formation of hydrogen bonds with other duplexes or with water; the N3 atom of guanine on G10 and G22 bases in the parent structure does not form hydrogen bonds.  相似文献   

12.
Crystal structure of RNase A complexed with d(pA)4   总被引:3,自引:0,他引:3  
Co-crystals of pancreatic RNase A complexed with oligomers of d(pA)4 were grown from polyethylene glycol 4000 at low ionic strength and the X-ray diffraction data were collected to 2.5 A resolution. From a series of heavy-atom derivatives a multiple isomorphous replacement-phased electron density map of the RNase-d(pA)4 complex was calculated to 3.5 A. By inspection, the disposition of the known structure of RNase in the unit cell was determined and this was confirmed by calculation of a standard crystallographic residual, R. Refinement of the protein alone in the unit cell as a strictly rigid body yielded an R factor of 0.32 at 2.8 A resolution. From difference Fourier syntheses DNA fragments were elucidated and incorporated into a model of the complex. The entire asymmetric unit was refined using a restrained-constrained least-squares procedure (CORELS) interspersed with difference Fourier syntheses. At the present time the crystal structure has been refined to an overall R value of 0.215 at 2.5 A resolution. The asymmetric unit of the complex crystals contains four oligomers of d(pA)4 associated with each molecule of RNase. In addition, there may also be partially ordered fragments of DNA at low occupancy present in the unit cell, but these have not, at this time, been incorporated into the model. One tetramer of d(pA)4 is entirely bound by a single protein molecule and occupies a portion of the active site cleft, filling the purine binding site and the phosphate site at the catalytic center with its 5' nucleotide. Two other tetramers are partly intermolecular. One passes from near the pyrimidine binding site over the surface of the protein toward arginine 39 and into a solvent region. A third tetramer is anchored at its 5' terminus by a salt link to lysine 98, passes near arginine and then through a solvent region to terminate with its 3' end near the surface of another protein molecule in the lattice. The fourth tetramer of d(pA)4 is bound at its 5' end on the opposite side of the protein from the active site in an electropositive anion trap that includes lysines 31 and 91 as well as arginine 33. There may be a DNA-DNA interaction involving the 5' phosphate of one tetramer and the 3' bases of two other tetramers and this may help to stabilize the crystalline complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Single-crystal X-ray diffraction techniques have been used to characterize the structure of the self-complementary DNA oligomer d(CTCTAGAG). The structure was refined to an R factor of 14.7% using data to 2.15-A resolution. The tetragonal unit cell, space group P4(3)2(1)2, has dimensions a = 42.53 and c = 24.33 A. The asymmetric unit consists of a single strand or four base pairs. Two strands, related by a crystallographic dyad axis, coil about each other to form a right-handed duplex. This octamer duplex has a mean helix rotation of 32 degrees, 11.3 base pairs per turn, an average rise of 3.1 A, C3'-endo furanose conformations, a shallow minor groove, and a deep major groove. Such averaged parameters suggest classification of the octamer as a member of the A-DNA family. However, the global parameters tend to mask variations in conformational parameters observed at the level of the base pairs. In particular, the central TpA (= TpA) step displays extensive interstrand purine-purine overlap and an unusual sugar-phosphate backbone conformation. These structural features may be directly related to certain sequence-specific protein-DNA interactions involving nucleases and repressors.  相似文献   

14.
The crystal and molecular structure of the ammonium salt of deoxycytidylyl-(3'-5')-deoxyguanosine has been determined from 0.85 A resolution single crystal X-ray diffraction data. The crystals obtained by acetone diffusion technique at -20 degrees C, are orthorhombic, P212121, a = 12.880(2), b = 17444(2) and c = 27.642(2) A. The structure was solved by high resolution Patterson and Fourier methods and refined to R = 0.136. There are two d(CpG) molecules in the asymmetric unit forming a mini left handed Z-DNA helix. This is in contrast to the earlier reported forms of d(CpG) where the molecules form self base paired duplexes. There are two ammonium ions in the asymmetric unit. The major groove NH+4 ion interacts with N7 of guanines through water bridges besides making H-bonded interactions directly with the phosphate oxygen atoms. A second NH+4 ion is found in the minor groove interacting directly with the phosphate oxygen atoms. Symmetry related molecules pack in such a way that the cytosine base stacks on cytosine and guanine base on guanine. Our structure demonstrates that alternating d(CpG) sequences have the ability to adopt the left handed Z-DNA structure even at the dimer level i.e., in a sequence which is only two base pairs long.  相似文献   

15.
1H resonance assignments in the NMR spectra of the self-complementary hexadeoxyribonucleoside pentaphosphate d(5'-GCATGC)2 and its complex with the antibiotic nogalamycin, together with interproton distance constraints obtained from two-dimensional nuclear Overhauser effect (NOE) spectra, have enabled us to characterize the three-dimensional structure of these species in solution. In the complex described, two drug molecules are bound per duplex, in each of two equivalent binding sites, with full retention of the dyad symmetry. Twenty-eight NOE distance constraints between antibiotic and nucleotide protons define the position and orientation of the bound drug molecule. Nogalamycin intercalates at the 5'-CA and 5'-TG steps with the major axis of the anthracycline chromophore aligned approximately at right angles to the major axes of the base pairs. The nogalose sugar occupies the minor groove of the helix and makes many contacts with the deoxyribose moieties of three nucleotides along one strand of the duplex in the 5'-TGC segment. The charged dimethylamino group and hydroxyl functions of the bicyclic sugar lie in the major groove juxtaposed to the guanine base, the bridging atoms of the bicyclic sugar making contacts with the methyl group of the thymine. Thus the antibiotic is not symmetrically disposed in the intercalation site but is in close contact in both grooves with atoms comprising the 5'-TGC strand. The intercalation cavity is wedge-shaped, the major axes of the base pairs forming the site being tilted with respect to one another. All base-pair hydrogen-bonding interactions are maintained in the complex, and there is no evidence for Hoogsteen pairing. The free duplex adopts a regular right-handed B-type conformation in which all glycosidic bond angles are anti and all sugar puckers lie in the C2'-endo range. In the complex the glycosidic bond angles and the sugar puckers deviate little from those observed for the duplex alone. The presence of two bound nogalamycin molecules substantially slows the "breathing" motions of the base pairs forming the intercalation cavity, and the observation of two downfield-shifted resonances in the 31P NMR spectrum of the complex suggests a pronounced local helix unwinding at the drug binding site. The footprinting data of Fox and Waring [Fox, K.R., & Waring, M.J. (1986) Biochemistry 25, 4349-4356] imply that the highest affinity binding sites of nogalamycin have the sequence 5'-GCA (or 5'-TGC).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The hetero duplex molecule, r(CGCA)d(AAAAAGCG):d(CGCTTTTTTGCG) which corresponds to Okazaki fragment was synthesized and its molecular structure has been analyzed by NMR study. The RNA strand of RNA-DNA hybrid region adopts A-form and DNA strand of the same region deviates from the standard B-form. The conformation of DNA-DNA duplex segment belongs to B-form. The hybrid-DNA duplex junction shows a structural discontinuities, A-B junction. The same conformational characteristic of oligo(dA): oligo(dT) tract as that of DNA oligomer which has same base sequence has been observed.  相似文献   

17.
The solution structure of the dodecamer duplex d(CTTTTGCAAAAG)2 and its 2:1 complex with the bis-benzimidazole Hoechst 33258 has been investigated by NMR and NOE-restrained molecular dynamics (rMD) simulations. Drug molecules are bound in each of the two A-tracts with the bulky N-methylpiperazine ring of each drug located close to the central TG (CA) step, binding essentially to the narrow minor groove of each A-tract. MD simulations over 1 ns, using an explicit solvation model, reveal time-averaged sequence-dependent narrowing of the minor groove from the 3′-end towards the 5′-end of each TTTT sequence. Distinct junctions at the TpG (CpA) steps, characterised by large positive roll, low helical and propeller twists and rapid AT base pair opening rates, add to the widening of the groove at these sites and appear to account for the bound orientation of the two drug molecules with the N-methylpiperazine ring binding in the wider part of the groove close to the junctions. Comparisons between the free DNA structure and the 2:1 complex (heavy atom RMSD 1.55 Å) reveal that these sequence-dependent features persist in both structures. NMR studies of the sequence d(GAAAAGCTTTTC)2, in which the A-tracts have been inverted with the elimination of the TpG junctions, results in loss of orientational specificity of Hoechst 33258 and formation of multiple bound species in solution, consistent with the drug binding in a number of different orientations.  相似文献   

18.
The crystal structure of d[Cp(CH3)G] has been determined as part of a project to study the mechanism of the B----Z transition in DNA. The asymmetric unit contains two dinucleotides and the equivalent of 7.5 water molecules, partially disordered over 12 definable positions. The two symmetry-independent dinucleotides form a duplex with Watson-Crick base-pairing and a right-handed helical sense. Comparison with previously determined structures of the B and A conformation showed that this duplex is closer to B than to A but significantly different from B. It corresponds to a stretched out helix with a 4 A rise per base pair and a helical twist of 32 degrees. This structure may serve as a model for the bending of DNA in certain situations. The configuration at the methyl phosphonate is RP, and a mechanism, based on this assignment, is presented for the B----Z transition in DNA.  相似文献   

19.
20.
We report here the crystal structure of the DNA hexamer duplex d(CGCGCA).d(TGCGCG) at 1.71 Å resolution. The crystals, in orthorhombic space group, were grown in the presence of cobalt hexammine, a known inducer of the left-handed Z form of DNA. The interaction of this ion with the DNA helix results in a change of the adenine base from the common amino tautomeric form to the imino tautomer. Consequently the A:T base pair is disrupted from the normal Watson–Crick base pairing to a ‘wobble’ like base pairing. This change is accommodated easily within the helix, and the helical parameters are those expected for Z-DNA. When the cobalt hexammine concentration is decreased slightly in the crystallization conditions, the duplex crystallizes in a different, hexagonal space group, with two hexamer duplexes in the asymmetric unit. One of these is situated on a crystallographic 6-fold screw axis, leading to disorder. The tautomeric shift is not observed in this space group. We show that the change in inter-helix interactions that lead to the two different space groups probably arise from the small decrease in ion concentration, and consequently disordered positions for the ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号