首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Label-free LC-MS/MS-based shot-gun proteomics was used to quantify the differential protein synthesis and metabolite profiling in order to assess metabolic changes during the development of citrus fruits. Our results suggested the occurrence of a metabolic change during citrus fruit maturation, where the organic acid and amino acid accumulation seen during the early stages of development shifted into sugar synthesis during the later stage of citrus fruit development. The expression of invertases remained unchanged, while an invertase inhibitor was up-regulated towards maturation. The increased expression of sucrose-phosphate synthase and sucrose-6-phosphate phosphatase and the rapid sugar accumulation suggest that sucrose is also being synthesized in citrus juice sac cells during the later stage of fruit development.  相似文献   

3.
研究了柑橘果实膨大初期遮光处理对果皮色素、果实含糖量、光合产物在果实内的分配及果实中蔗糖代谢相关酶活力变化的影响.结果表明遮光处理使果皮中的叶绿素含量迅速降低而类胡萝卜素积累缓慢,蔗糖的相对含量则明显上升.遮光处理还促进了光合产物向果皮运输,相应地降低了汁囊中光合产物分配比率,使果实汁囊中蔗糖含量下降.果皮中SS、SPS和转化酶活力在遮光处理后均有较大的提高,而汁囊中则差异不大.上述结果表明,在果实自身光合作用被抑制的条件下,果皮是通过提高酶活力来增强库强度,从而使其在与汁囊竞争中获得更多的光合产物,造成汁囊含糖量下降.  相似文献   

4.
5.
Current concepts of the factors determining sink strength and the subsequent regulation of carbohydrate metabolism in tomato fruit are based upon an understanding of the relative roles of sucrose synthase, sucrose phosphate synthase and invertase, derived from studies in mutants and transformed plants. These enzymes participate in at least four futile cycles that involve sugar transport between the cytosol, vacuole and apoplast. Key reactions are (1) the continuous rapid degradation of sucrose in the cytosol by sucrose synthase (SuSy), (2) sucrose re-synthesis via either SuSy or sucrose phosphate synthase (SPS), (3) sucrose hydrolysis in the vacuole or apoplast by acid invertase, (4) subsequent transport of hexoses to the cytosol where they are once more converted into sucrose, and (5) rapid synthesis and breakdown of starch in the amyloplast. In this way futile cycles of sucrose/hexose interchange govern fruit sugar content and composition. The major function of the high and constant invertase activity in red tomato fruit is, therefore, to maintain high cellular hexose concentrations, the hydrolysis of sucrose in the vacuole and in the intercellular space allowing more efficient storage of sugar in these compartments. Vacuolar sugar storage may be important in sustaining fruit cell growth at times when less sucrose is available for the sink organs because of exhaustion of the carbohydrate pools in source leaves.  相似文献   

6.
温州蜜柑果实发育期间果糖激酶与糖积累的关系   总被引:2,自引:0,他引:2  
研究了温州蜜柑果实发育进程中糖含量变化与果糖激酶活性变化的关系及增施氮肥对果实果糖激酶活性和基因表达的影响.结果表明,随着果实的发育,可食组织果糖激酶活性逐渐降低,糖含量不断增加,果皮中蔗糖和葡萄糖含量在成熟期略有下降,果糖激酶活性略有升高.果实膨大期后增施氮肥的果实在成熟期可食组织及果皮中蔗糖和果糖所占比例均有所下降,葡萄糖比例升高,以单位蛋白质表示的果糖激酶活性也明显高于对照果实.Northern分析表明,增施氮肥能促进发育后期果实可食组织中Cufrkl基因的表达,但对Cufrk2的表达无明显作用.  相似文献   

7.
8.
9.
Carbohydrate and abscisic acid (ABA) metabolism were investigated in normal and phenotypically small 'Hass' avocado ( Persea americana Mill.) fruit in an attempt to link alterations in sugar and ABA content with changes in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC 1.1.1.34) activity and fruit size. The small-fruit phenotype was characterized by reduced seed HMGR activity, increased seed insoluble acid invertase ( β - d -fructofuranosidase, EC 3.2.1.26), decreased sucrose synthase (SS; UDP- d -glucose: d -fructose-2- α -glucosyl-transferase, EC 2.4.1.13) activity, decreased sucrose content, and increased glucose as a proportion of the total soluble sugar. Sucrose phosphate synthase (SPS; UDP- d -glucose: d -fructose 6-phosphate 2- α - d -glucosyltransferase, EC 2.4.1.14) activity was unaffected in seed but reduced in mesocarp of the small fruit. In addition, the small-fruit variant displayed enhanced respiration and both seed and mesocarp tissue showed increased ABA metabolism. Applied ABA caused an increase in insoluble acid invertase activity in seed tissue of normal fruit while mevastatin reduced HMGR activity in this tissue, caused sucrose depletion and increased the proportion of glucose from 5 to 57% of total soluble sugars. Exogenous glucose suppressed HMGR activity in seed tissue whereas in mesocarp tissue, HMGR activity was reduced to 38% of the control after 6 h but enhanced by 46% by 48 h. Glucose increased ABA biosynthesis and turnover in competent tissues. These results suggest that ABA turnover is mediated, in part, by carbohydrate content and composition which also affects HMGR activity. It is proposed that sugar and ABA signals act in concert to modulate expression and/or activity of HMGR in the control of 'Hass' avocado fruit growth and final fruit size.  相似文献   

10.
11.
12.
13.
14.
磷酸蔗糖合酶(sucrose phosphate synthase,SPS)是植物中蔗糖合成的主要限速酶,影响植物的生长发育和果实中蔗糖的含量。为探明苹果中SPS基因家族特性及其在蔗糖合成中的作用,该研究从苹果基因组中分离了MdSPS家族基因,分析了它们的进化关系以及mRNA表达特性与酶活性和蔗糖含量的关系。结果显示:(1)在苹果基因组中有8个SPS家族基因表达,它们分别属于双子叶植物的3个SPS亚家族。(2)荧光定量PCR分析显示,苹果C类的MdSPS6基因和A类的MdSPS1a/b基因是苹果中表达丰度最高的SPS基因成员,其中MdSPS6在苹果成熟果中表达丰度最高,其次是成熟叶片,而MdSPS1a/b在不积累蔗糖的幼果中表达丰度最高。(3)在果实发育过程中,除MdSPS1a/b之外,其它5个苹果MdSPS家族基因均随果实的生长表达丰度增加,与SPS活性和蔗糖含量明显呈正相关关系。研究表明,C类家族MdSPS6是苹果果实发育后期和叶片中蔗糖合成的主要SPS基因。  相似文献   

15.
16.
Effects of carbohydrate starvation on gene expression in citrus root   总被引:7,自引:0,他引:7  
Li CY  Weiss D  Goldschmidt EE 《Planta》2003,217(1):11-20
The roots of alternate-bearing citrus (Murcott, a Citrus reticulata hybrid) trees undergo extreme fluctuations of carbohydrate abundance and starvation. Using this system, we investigated the effect of root carbohydrate (total soluble sugar, sucrose and starch) depletion on carbohydrate-related gene expression. A series of genes, including those coding for starch phosphorylase ( STPH-L and STPH-H), ADP-glucose pyrophosphorylase, small subunit ( Agps), R1, plastidic ADP/ATP transporter ( AATP), phosphoglucomutase ( PGM-P and PGM-C), sucrose synthase ( CitSuS1 and CitSuSA), sucrose transporter ( SUT1 and SUT2), hexokinase ( HK) and alpha-amylase ( alpha-AMY), have been isolated and their expression analyzed. The genes were found to respond differentially to carbohydrate depletion. STPH-L, STPH-H, Agps, R1, AATP, PGM-P, PGM-C, CitSuS1 and HK were down-regulated while SUT1 and alpha-AMY were up-regulated during carbohydrate depletion. Two other genes, CitSuSA and SUT2, did not respond to carbohydrate depletion. Fruit removal, which interrupted the carbohydrate depletion induced by heavy fruiting, reversed these gene expression patterns. Trunk girdling and whole-plant darkening treatments, which brought about root carbohydrate depletion, induced the same changes in gene expression obtained in the alternate-bearing system. The possible roles of the up- and down-regulated genes in the metabolism of carbohydrate-depleted citrus roots are discussed. Although the specific signals involved have not been determined, the results support the feast/famine hypothesis of carbohydrate regulation proposed by Koch [K.E. Koch (1996) Annu Rev Plant Physiol Plant Mol Biol 47:509-540].  相似文献   

17.
We report the isolation and characterization of two sucrose transporter cDNAs (CitSUT1 and CitSUT2) from citrus. CitSUT1 and CitSUT2 encode putative proteins (CitSUT1 and CitSUT2) of 528 and 607 amino acids, respectively. CitSUT1 and CitSUT2 share high similarities with sucrose transporters isolated from other plants. The expression of CitSUT1 in mature leaf discs is repressed by exogenous sucrose, glucose, mannose, and the glucose analog 2-deoxyglucose but not by another glucose analog 3-O-methylglucose, indicating a hexokinase (HXK)-mediated signaling pathway. CitSUT2 expression is not affected by exogenous sugars. Whereas CitSUT1 expresses strongly in source, sugar exporting organs, CitSUT2 expresses more strongly in sink, sugar importing organs, suggesting different physiological roles for these sucrose transporters.  相似文献   

18.
遮光灵武长枣果实糖积累和代谢相关酶活性特征   总被引:1,自引:0,他引:1       下载免费PDF全文
于灵武长枣盛花期对果实进行遮光处理,以自然照光为对照,通过测定果实生长指标、叶绿素含量、蔗糖代谢相关酶活性及其蔗糖代谢糖分含量等,研究果实光合作用在果实糖积累中的作用及对果实多糖和总糖含量积累的影响。结果表明:(1)遮光处理后,果实单粒重、单粒体积以及果实中叶绿素含量均降低。(2)遮光处理不同程度增加了果实中转化酶、蔗糖磷酸合成酶和蔗糖合成酶分解方向酶的活性,而降低了其蔗糖合成酶合成方向酶的活性。(3)遮光处理主要影响果实着色期和成熟期的糖含量,对果实发育初期糖含量影响较小;果实多糖的形成与果实所受光照状况具有一定的关系,而果实中总糖的积累与外界光照具有密切关系。可见,果实遮光处理影响了果实发育过程中蔗糖代谢相关酶的活性,从而影响果实糖分的代谢和积累。  相似文献   

19.
Nolte KD  Koch KE 《Plant physiology》1993,101(3):899-905
An immunohistochemical approach was used in maize (Zea mays) and citrus (Citrus paradisi) to address the previously noted association between sucrose synthase and vascular bundles and to determine the localization of the low but detectable levels of sucrose synthase that remain in leaves after the import-export transition. Sucrose synthase protein was immunolocalized at the light microscope level using paraffin sections reacted with rabbit sucrose synthase polyclonal antisera and gold-conjugated goat anti-rabbit immunoglobulin G. Immunolabel was specifically observed in phloem companion cells of minor and intermediate veins in mature leaves of both species. Similar localization was apparent in the midrib of mature citrus leaves, with additional labeling in selected files of phloem parenchyma cells. A clear companion-cell specificity was evident in the phloem unloading zone of citrus fruit, where high activity of sucrose synthase has been demonstrated in vascular bundles during periods of rapid import. Sucrose synthase protein was not associated with adjacent cells surrounding the vascular strands in this tissue. The companion-cell specificity of sucrose synthase in phloem of both importing and exporting structures of these diverse species implies that this may be a widespread association and underscores its potential importance to the physiology of vascular bundles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号