首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We have cloned and sequenced ten Helicobacter pylori genes from a Chilean strain (CH-CTX1) including: a cytotoxin VacA fragment, a CagA fragment (A17), a species-specific protein (TsaA), urease subunits (UreA, UreB), a flagellin subunit (FlaB), heat shock proteins (HspA and HspB), adhesin (HpaA) and a lipoprotein (Lpp20). We compared their deduced amino acid sequences with the corresponding sequences from three unrelated H. pylori strains, including fully sequenced strains 26695(UK) and J99(USA), and found that eight of them (UreA, UreB, FlaB, HspA, HspB, Lpp20, TsaA and HpaA) presented more than 97.3% identity. In contrast, VacA partial sequence showed lower identity values (93.2-94.9%). Moreover, we found major differences in the A17 region respect to the number and arrangement of the internal repeated elements when sequences from different strains were aligned. The A17 regions from strains CH-CTX1 and 26695 are very similar (91.8% identity) but lacked 6 repeated elements when compared to the Australian strains ATCC 43526 and NCTC 11637. The CCUG 17874 A17 region showed the largest deletion involving 9 repeats. A17 size differences between strains CCUG 17874 and CH-CTX1 were verified by PCR and polypeptide size. Such differences may explain variations in virulence among H. pylori strains as well as diversity in serum immunoreactivity.  相似文献   

2.
Background. Helicobacter pylori survives transient exposure to extreme acid prior to adherence and growth on the gastric epithelium at neutral pH.
Materials and Methods. The effect of pH stress on protein profiles of H. pylori was observed using two-dimensional gel electrophoresis (2-D gels). H. pylori 26695 was grown microaerobically in tryptone-yeast extract broth, 3% fetal bovine serum. Growth in acid alkalinized the medium, whereas growth in base caused acidification. For 2-D gel analysis of protein profiles, cultures were grown in media buffered at pH 5.7 and at pH 7.5.
Results. Under all pH conditions, the most abundant proteins observed were the urease structural subunit UreB and the chaperonin GroEL. Growth in acid significantly increased the abundance of UreB. Thus, urease expression is not completely constitutive, as reported previously, but shows regulation by pH. Another protein observed only at low pH was identified as mammalian apolipoprotein A-I, possibly taken up by H. pylori from bovine serum in the growth medium. This finding, if confirmed, suggests that uptake of high-density lipoprotein from the human host may facilitate acquisition of cholesterol, required for formation of the unique cholesteryl glucosides in the membrane of H. pylori. In growth above pH 7, three stress proteins were induced: GroES (HspA), GroEL (HspB), and the antioxidant AhpC homolog TsaA. In addition, N-terminal sequence analysis identified five additional proteins that had not previously been reported on 2-D gels of H. pylori (FMN, SodB, TrxB, TsaA, and Tsr).
Conclusions. In summary, our 2-D gel study reveals expression of several proteins dependent on growth pH.  相似文献   

3.
Background:  Helicobacter pylori infection is associated with severe gastrointestinal disease including cancer. It induces complex antibody responses that might vary depending on disease state but currently cannot be assessed adequately. The objective of this work was the development of a sensitive and specific H. pylori multiplex serology assay with high-throughput capability that allows simultaneous detection of antibodies to a protein array.
Methods:  Seventeen proteins of up to three H. pylori strains (26695, G27, 151), including CagA, VacA, UreA, Catalase, Omp, and GroEL, were recombinantly expressed as glutathione- S -transferase fusion proteins, affinity-purified, and used as antigens in a fluorescent bead-based antibody-binding assay. Reference sera (n   =   317) characterized by commercial assays (screening ELISA with Western blot confirmation) were used for validation.
Results:  H. pylori seropositivity by multiplex serology defined as reactivity with at least four proteins showed good agreement (kappa: 0.70) with commercial serologic assay classification, and a sensitivity of 89% and specificity of 82%. For individual antigens, agreement with Western blot was good for CagA (kappa: 0.77), moderate for UreA (kappa: 0.53), and weak for VacA (kappa: 0.12). Of the 13 proteins expressed from two strains, only VacA showed serologic strain differences. High antibody reactivity to CagA (Type I infection) was negatively associated with antibodies to GroEL, Cad, CagM, catalase, HcpC, NapA, and UreA, suggesting type-specific differences in protein expression patterns and/or immune response.
Conclusion:  With its high-throughput and simultaneous detection abilities, H. pylori multiplex serology appears suited as tool for large seroepidemiologic studies assessing H. pylori prevalence, antibody patterns, and associations with specific diseases.  相似文献   

4.
The Gram negative bacterium Helicobacter pylori is a human pathogen which infects the gastric mucosa and causes an inflammatory process leading to gastritis, ulceration and cancer. A systematic, proteome based approach was chosen to detect candidate antigens of H. pylori for diagnosis, therapy and vaccine development and to investigate potential associations between specific immune responses and manifestations of disease. Sera from patients with active H. pylori infection (n = 24), a control group with unrelated gastric disorders (n = 12) and from patients with gastric cancer (n = 6) were collected and analyzed for the reactivity against proteins of the strain HP 26695 separated by two-dimensional electrophoresis. Overall, 310 antigenic protein species were recognized by H. pylori positive sera representing about 17% of all spots separated. Out of the 32 antigens most frequently recognized by H. pylori positive sera, nine were newly identified and 23 were confirmed from other studies. Three newly identified antigens which belong to the 150 most abundant protein species of H. pylori, were specifically recognized by H. pylori positive sera: the predicted coding region HP0231, serine protease HtrA (HP1019) and Cag3 (HP0522). Other antigens were recognized differently by sera from gastritis and ulcer patients, which may identify them as candidate indicators for clinical manifestations. The data from these immunoproteomic analyses are added to our public database (http://www.mpiib-berlin.mpg.de/2D-PAGE). This platform enables one to compile many protein profiles and to integrate data from other studies, an approach which will greatly assist the search for more immunogenic proteins for diagnostic assays and vaccine design.  相似文献   

5.
Helicobacter pylori is an important risk factor of duodenal ulcer (DU). Although many virulence factors of H. pylori have been identified, few have been reported to show an association with the pathogenesis of DU. The aims of this study were to identify H. pylori antigens showing a high seropositivity in DU and to develop a platform for rapid and easy diagnosis for DU. Because DU and gastric cancer (GC) are considered clinical divergent gastroduodenal diseases, we compared two-dimensional immunoblots of an acid-glycine extract of an H. pylori strain from a patient with DU probed with serum samples from 10 patients with DU and 10 with GC to identify DU-related antigens. Of the 11 proteins that were strongly recognized by serum IgG from DU patients, translation elongation factor EF-G (FusA), catalase (KatA), and urease alpha subunit (UreA) were identified as DU-related antigens, showing a higher seropositivity in DU samples (n = 124) than in GC samples (n = 95) (FusA, 70.2 versus 45.3%; KatA, 50.8 versus 41.1%; UreA, 44.4 versus 27.4%). In addition, we found that the use of multiple antigens improved the discrimination between patients with DU and those with GC as the odds ratios increased from 1.82 (95% confidence interval (CI), 0.79-4.21; p = 0.1607) for seropositivity for FusA, KatA, or UreA alone to 4.95 (95% CI, 2.05-12.0; p = 0.0004) for two of the three antigens and to 5.71 (95% CI, 1.86-17.6; p = 0.0024) for all three antigens. Moreover a protein array containing the three DU-related antigens was developed to test the idea of using multiple biomarkers in diagnosis. We conclude that FusA, KatA, and UreA are DU-related antigens of H. pylori, and the combination of these on a protein array provided a rapid and convenient method for detecting serum antibody patterns of DU patients.  相似文献   

6.
Survival of Helicobacter pylori in acid depends on intrabacterial urease. This urease is a Ni(2+)-containing oligomeric heterodimer. Regulation of its activity and assembly is important for gastric habitation by this neutralophile. The gene complex encodes catalytic subunits (ureA/B), an acid-gated urea channel (ureI), and accessory assembly proteins (ureE-H). With the use of yeast two-hybrid analysis for determining protein-protein interactions, UreF as bait identified four interacting sequences encoding UreH, whereas UreG as bait detected five UreE sequences. These results were confirmed by coimmunoprecipitation and beta-galactosidase assays. Native PAGE immunoblotting of H. pylori inner membranes showed interaction of UreA/B with UreI, whereas UreI deletion mutants lacked this protein interaction. Deletion of ureE-H did not affect this interaction with UreI. Hence, the accessory proteins UreE/G and UreF/H form dimeric complexes and UreA/B form a membrane complex with UreI, perhaps enabling assembly of the urease apoenzyme at the membrane surface and immediate urea access to intrabacterial urease to allow rapid periplasmic neutralization.  相似文献   

7.
Urease activity is vital for gastric colonization by Helicobacter species, such as the animal pathogen Helicobacter felis. Here it is demonstrated that H. felis expresses two independent, and distinct urease systems. H. felis isolate CS1 expressed two proteins of 67 and 70 kDa reacting with antibodies to H. pylori urease. The 67-kDa protein was identified as the UreB urease subunit, whereas the N-terminal amino acid sequence of the 70-kDa protein displayed 58% identity with the UreB protein and was tentatively named UreB2. The gene encoding the UreB2 protein was identified and located in a gene cluster named ureA2B2. Inactivation of ureB led to complete absence of urease activity, whereas inactivation of ureB2 resulted in decreased urease activity. Although the exact function of the UreA2B2 system is still unknown, it is conceivable that UreA2B2 may contribute to pathogenesis of H. felis infection through a yet unknown mechanism.  相似文献   

8.
幽门螺杆菌适应性定植蒙古沙鼠前、后的蛋白质组学研究   总被引:1,自引:0,他引:1  
为比较研究幽门螺杆菌(Hp)适应性定植蒙古沙鼠前后的蛋白表达谱变化,将Hp临床分离株感染沙鼠,并体内连续传代,驯化一株高适应性菌株,然后采用双向电泳和质谱技术对适应性变化前后两株菌的差异蛋白进行鉴定。结果表明,随着Hp临床株在沙鼠体内的连续传代,感染率逐渐升高,第10代后,感染率稳定在90%以上。适应性定植后,Hp蛋白谱发生了变化。在选择的5个候选差异蛋白点中,共鉴定出4个蛋白,分别为Hp菌的功能未知的HP0318编码蛋白、氢化酶表达/形成蛋白(hypB)、异柠檬酸脱氢酶(icd)、ADP-L-D-甘露庚糖表异构酶(rfaD)。上述鉴定蛋白可能与Hp适应性定植具有很大的相关性。  相似文献   

9.
Nitric oxide (NO) is an omnipresent regulator of cell function in a variety of physiologic and pathophysiologic states. In part, NO exerts its actions by S-nitrosylation of target thiols, primarily in cysteine residues. Delineating the functional correlates of S-nitrosylation can begin with identification of the entire population of S-nitrososylated proteins. Recently, the biotin switch technique was developed to allow a proteomic approach to identification of the "universe" of S-nitrsoylated proteins. In this study using endotoxin-stimulated RAW264.7 murine macrophages, we have utilized the biotin-switch technique and protein sequencing to identify S-nitrosylated proteins in this setting. In contrast to other studies utilizing exogenous sources of NO, our approach utilizes endogenous NO synthesis as the basis for S-nitrosylation. Our results indicate multiple unique proteins not previously identified as S-nitrosylation targets: enolase, pyruvate kinase, elongation factor-1 and -2, plastin-2, FRAG-6, CEM-16, and SMC-6. While the ubiquitous nature of NO argues for some degrees of commonality, S-nitrosylation of unique proteins specific to endotoxin stimulated macrophages suggests regulatory mechanisms for which NO is necessary, but not sufficient.  相似文献   

10.
11.
Smith TG  Lim JM  Weinberg MV  Wells L  Hoover TR 《Proteomics》2007,7(13):2240-2245
Helicobacter pylori extracellular proteins are of interest because of possible roles in pathogenesis, host recognition, and vaccine development. We utilized a unique approach by growing two strains (including one nonsequenced strain) in a defined serum-free medium and directly analyzing the proteins present in the culture supernatants by LC-MS/MS. Over 125 proteins were identified in the extracellular proteomes of two H. pylori strains. Forty-five of these proteins were enriched in the extracellular fraction when compared to soluble cell-associated protein samples. Our analysis confirmed and expanded on the previously reported H. pylori extracellular proteome. Extracellular proteins of interest identified here included cag pathogenicity island protein Cag24 (CagD); proteases HP0657 and HP1012; a polysaccharide deacetylase, HP0310, possibly involved in the hydrolysis of acetyl groups from host N-acetylglucosamine residues or from residues on the cell surface; and HP0953, an uncharacterized protein that appears to be restricted to Helicobacter species that colonize the gastric mucosa. In addition, our analysis found eight previously unidentified outer membrane proteins and two lipoproteins that could be important cell surface proteins.  相似文献   

12.
13.
Nitric oxide (NO) has a fundamental role in the plant hypersensitive disease resistance response (HR), and S-nitrosylation is emerging as an important mechanism for the transduction of its bioactivity. A key step toward elucidating the mechanisms by which NO functions during the HR is the identification of the proteins that are subjected to this PTM. By using a proteomic approach involving 2-DE and MS we characterized, for the first time, changes in S-nitrosylated proteins in Arabidopsis thaliana undergoing HR. The 16 S-nitrosylated proteins identified are mostly enzymes serving intermediary metabolism, signaling and antioxidant defense. The study of the effects of S-nitrosylation on the activity of the identified proteins and its role during the execution of the disease resistance response will help to understand S-nitrosylation function and significance in plants.  相似文献   

14.
The Helicobacter pylori cag pathogenicity island (cag PAI) encodes components of a type IV secretion system (T4SS) involved in host interaction and pathogenicity. Previously, seven cag PAI proteins were identified as homologs of Agrobacterium tumefaciens Vir proteins, which form a paradigm T4SS. The T pilus composed of the processed VirB2 pilin is an external structural part of the A. tumefaciens T4SS. In H. pylori, cag-dependent assembly of pili has not been observed so far, nor has a pilin (VirB2) ortholog been characterized. We have here identified, using a motif-based search, an H. pylori cag island protein (HP0546) that possesses sequence and predicted structural similarities to VirB2-like pilins of other T4SSs. The HP0546 protein displays interstrain variability in its terminal domains. HP0546 was expressed as a FLAG-tagged fusion protein in Escherichia coli, A. tumefaciens, and H. pylori and was detected as either two or three bands of different molecular masses in the insoluble fraction, indicating protein processing. As reported previously, isogenic H. pylori mutants in the putative cag pilin gene had reduced abilities to induce cag PAI-dependent interleukin-8 secretion in gastric epithelial cells. Fractionation analysis of H. pylori, using a specific antiserum raised against an N-terminal HP0546 peptide, showed that the protein is partially surface exposed and that its surface localization depended upon an intact cag system. By immunoelectron microscopy, HP0546 was localized in surface appendages, with surface exposure of an N-terminal epitope. Pronounced strain-to-strain variability of this predicted surface-exposed part of HP0546 indicates a strong selective pressure for variation in vivo.  相似文献   

15.
We have investigated a large set of interactions from the Helicobacter pylori protein interaction map previously identified by high-throughput yeast two-hybrid (htY2H)-based methods. This study had two aims: i) to validate htY2H as a source of protein-protein interaction complexes for high-throughput biochemical and structural studies of the H. pylori interactome; and ii) to validate biochemically interactions shown by htY2H to involve components of the H. pylori type IV secretion systems. Thus, 17 interactions involving 31 proteins and protein fragments were studied, and a general strategy was designed to produce protein-interacting partners for biochemical and structural characterization. We show that htY2H is a valid source of protein-protein complexes for high-throughput proteome-scale characterization of the H. pylori interactome, because 76% of the interactions tested were confirmed biochemically. Of the interactions involving type IV secretion proteins, three could be confirmed. One interaction is between two components of the type IV secretion apparatus, ComB10 and ComB4, which are VirB10 and VirB4 homologs, respectively. Another interaction is between a type IV component (HP0525, a VirB11 homolog) and a non-type IV secretion protein (HP01451), indicating that proteins other than the core VirB (1-11)-VirD4 proteins may play a role in type IV secretion. Finally, a third interaction was biochemically confirmed between CagA, a virulence factor secreted by the type IV secretion system encoded by the Cag pathogenicity island, and a non-type IV secretion protein, HP0496.  相似文献   

16.
Bai X  Yang L  Tian M  Chen J  Shi J  Yang Y  Hu X 《PloS one》2011,6(6):e20714
The viability of recalcitrant seeds is lost following stress from either drying or freezing. Reactive oxygen species (ROS) resulting from uncontrolled metabolic activity are likely responsible for seed sensitivity to drying. Nitric oxide (NO) and the ascorbate-glutathione cycle can be used for the detoxification of ROS, but their roles in the seed response to desiccation remain poorly understood. Here, we report that desiccation induces rapid accumulation of H(2)O(2), which blocks recalcitrant Antiaris toxicaria seed germination; however, pretreatment with NO increases the activity of antioxidant ascorbate-glutathione pathway enzymes and metabolites, diminishes H(2)O(2) production and assuages the inhibitory effects of desiccation on seed germination. Desiccation increases the protein carbonylation levels and reduces protein S-nitrosylation of these antioxidant enzymes; these effects can be reversed with NO treatment. Antioxidant protein S-nitrosylation levels can be further increased by the application of S-nitrosoglutathione reductase inhibitors, which further enhances NO-induced seed germination rates after desiccation and reduces desiccation-induced H(2)O(2) accumulation. These findings suggest that NO reinforces recalcitrant seed desiccation tolerance by regulating antioxidant enzyme activities to stabilize H(2)O(2) accumulation at an appropriate concentration. During this process, protein carbonylation and S-nitrosylation patterns are used as a specific molecular switch to control antioxidant enzyme activities.  相似文献   

17.
Helicobacter pylori, an important human pathogen, is capable of causing persistent infection with minimal immune response. The first line of defense during H. pylori infection is through gastric epithelial cells that present TLR, A family of bacterial proteins that share homology with the Toll/IL‐1 receptor (TIR) domain were identified. Bacterial TIR proteins (BTP) mimic human TIR domain proteins and act on myeloid differentiation primary response gene 88 (MyD88) signaling pathways to suppress TLR signaling. H. pylori may also produce a similar protein. A putative H. pylori BTP was found based on sequence homology. The corresponding gene hp1437 was inserted into an expression vector in fusion with an N‐terminal cleavable 6his‐tag. The recombinant protein, 6his‐HP1437, was purified using nickel affinity chromatography with a yield of 8 mg/L culture. Oligomerization of HP1437 was investigated by size‐exclusion chromatography. It was found that HP1437 forms dimers in solution similar to other BTPs. Furthermore, glutathione S‐transferase pull down assays identified an interaction between HP1437 and human TIR domain adaptor MyD88. These findings suggest that HP1437 has the characteristic features of BTPs and may play a direct role in reducing immune response against H. pylori by binding to MyD88 and pave the way for an in‐depth characterization of this putative novel H. pylori virulence factor.  相似文献   

18.
Apoptosis resistance, a condition favoring genomic instability, is associated with higher risk of colorectal cancer. Deoxycholate (DOC) is a hydrophobic bile salt found in high concentrations in colon cancer patients, and induces apoptosis in cultured colonic cells and ex vivo in colonic biopsies. We showed previously that the chronic exposure of colon cancer cells to increasing concentrations of DOC leads to apoptosis resistance, and the suggested mechanism involves oxidative/nitrosative stress. Nitric oxide (NO) is a key signaling molecule that regulates cell function in a variety of physiologic and pathophysiologic states. In part, NO exerts its actions by S-nitrosylation of target thiols, and several proteins are regulated through this PTM, including the caspases, the main effectors of apoptosis. Here, we performed a proteomics study in the DOC-induced apoptosis-resistant colon cell line, HCT-116RC. Its profile of S-nitrosylated proteins was compared to a control cell line not exposed to DOC. Eighteen differentially S-nitrosylated proteins were identified in the HCT-116RC cell line, 14 of these are novel targets of S-nitrosylation not previously reported. These proteins include cytoskeletal and signaling proteins, metabolic enzymes, chaperones, and redox- and differentiation-related proteins. These results broaden our knowledge of potential signal transduction pathways that may lead to the development of new biomarkers and therapy targets.  相似文献   

19.
20.
Proteomic identification of S-nitrosylated proteins in Arabidopsis   总被引:11,自引:0,他引:11       下载免费PDF全文
Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S-nitrosoglutathione. Furthermore, Arabidopsis plants were treated with gaseous NO to analyze whether S-nitrosylation can occur in the specific redox environment of a plant cell in vivo. S-Nitrosylated proteins were detected by a biotin switch method, converting S-nitrosylated Cys to biotinylated Cys. Biotin-labeled proteins were purified and analyzed using nano liquid chromatography in combination with mass spectrometry. We identified 63 proteins from cell cultures and 52 proteins from leaves that represent candidates for S-nitrosylation, including stress-related, redox-related, signaling/regulating, cytoskeleton, and metabolic proteins. Strikingly, many of these proteins have been identified previously as targets of S-nitrosylation in animals. At the enzymatic level, a case study demonstrated NO-dependent reversible inhibition of plant glyceraldehyde-3-phosphate dehydrogenase, suggesting that this enzyme could be affected by S-nitrosylation. The results of this work are the starting point for further investigation to get insight into signaling pathways and other cellular processes regulated by protein S-nitrosylation in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号