首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In our studies to analyze the structure/function relationships among cytoplasmic and organellar seryl-tRNA synthetases (SerRS), we have characterized a Zea mays cDNA (SerZMm) encoding a protein with significant similarity to prokaryotic SerRS enzymes. To demonstrate the functional identity of SerZMm, the gene sequence encoding the putative mature protein was cloned. This construct complemented in vivo a temperature-sensitive Escherichia coli serS mutant strain. The mature SerZMm protein overexpressed in Escherichia coli efficiently aminoacylated bacterial tRNASer in vitro, while yeast tRNA was a poor substrate. These data identify SerZMm as an organellar maize seryl-tRNA synthetase, the first plant organellar SerRS to be cloned. The analysis of its N-terminal targeting signal suggests a mitochondrial function for the SerZMm protein in maize.  相似文献   

2.
The seryl-tRNA synthetase from Saccharomyces cerevisiae interacts with the peroxisome biogenesis-related factor Pex21p. Several deletion mutants of seryl-tRNA synthetase were constructed and inspected for their ability to interact with Pex21p in a yeast two-hybrid assay, allowing mapping of the synthetase domain required for complex assembly. Deletion of the 13 C-terminal amino acids abolished Pex21p binding to seryl-tRNA synthetase. The catalytic parameters of purified truncated seryl-tRNA synthetase, determined in the serylation reaction, were found to be almost identical to those of the native enzyme. In vivo loss of interaction with Pex21p was confirmed in vitro by coaffinity purification. These data indicate that the C-terminally appended domain of yeast seryl-tRNA synthetase does not participate in substrate binding, but instead is required for association with Pex21p. We further determined that Pex21p does not directly bind tRNA, and nor does it possess a tRNA-binding motif, but it instead participates in the formation of a specific ternary complex with seryl-tRNA synthetase and tRNA(Ser), strengthening the interaction of seryl-tRNA synthetase with its cognate tRNA(Ser).  相似文献   

3.
Landraces of maize (Zea mays ssp. mays) and its wild teosinte relatives (Zea mays spp. parviglumis and mexicana) were surveyed for sensitivity to fumonisin B(1), a phytotoxin produced by the maize pathogen Gibberella moniliformis. Only two of 42 Z. mays samples were highly insensitive to FB(1) (ED(50) = ca. 200 microM). The teosintes and 76% of the maize landraces were moderately or highly sensitive to FB(1) (ED(50) < or = 30 microM), which indicates that FB(1) sensitivity is likely to be an ancestral trait in Z. mays. F(1) generations derived from crosses between FB(1)-sensitive maize inbred B73 and insensitive landraces were significantly less sensitive than B73. Thus, our data indicate that FB(1)-insensitivity is a relatively rare but heritable trait in maize. We also report the sensitivity of maize to other Gibberella toxins - beauvericin, diacetoxyscirpenol, and moniliformin.  相似文献   

4.
5.
We report here the identification and characterization of the mouse mitochondrial seryl-tRNA synthetase (mtSerRS). The genomic organization of mouse mtSerRS has been elucidated. The mouse mtSerRS gene containing 16 exons encodes a 519 residue protein with a strong homology to the mitochondria-like seryl-tRNA synthetase of bacteria, yeast, and other homologs. The mouse mtSerRS is ubiquitously expressed in various tissues, but more abundantly in tissues with high metabolic rates including heart and liver. Surprisingly, this gene, unlike other nuclear genes encoding mitochondrial proteins, exhibited a low expression in skeletal muscle and brain. Furthermore, immunofluorescence analysis of NIH3T3 cells expressing the mtSerRS-GFP fusion protein demonstrated that the mouse mtSerRS localizes in mitochondrion. These observations suggest that the mouse mtSerRS is an evolutionarily conserved protein involved in aminoacylation. Thus, it may play a role in the fidelity in mitochondrial translation and pathogenesis of deafness-associated mutations in the mitochondrial tRNA(Ser(UCN)).  相似文献   

6.
Mitochondria and glyoxysomes were isolated from scutella of maize (Zea mays L.) by density gradient centrifugation. Citrate synthetase was partly solubilized from the organelles by sonication. The sonicated organelle suspensions were centrifuged at high speed, and the supernatants were used as enzyme preparations without further purification. The enzymes of the two organelles differ in all properties examined (pH activity curve, Km for substrates, elution volume on Sephadex G-100, mobility on starch gel at pH 7). Both enzymes are inhibited by ATP, but the inhibition is stronger for the mitochondrial enzyme. The inhibition is competitive for the mitochondrial enzyme and noncompetitive for the glyoxysomal enzyme. The glyoxysomal, but not the mitochondrial enzyme, is inhibited 40% with 1 mm ADP and cytidine triphosphate.  相似文献   

7.
8.
9.
10.
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.  相似文献   

11.
Requejo R  Tena M 《Phytochemistry》2005,66(13):1519-1528
To gain insight into plant responses to arsenic, the effect of arsenic exposure on maize (Zea mays L.) root proteome has been examined. Maize seedlings were fed hydroponically with 300 microM sodium arsenate or 250 microM sodium arsenite for 24 h, and changes in differentially displayed proteins were studied by two-dimensional electrophoresis and digital image analysis. About 10% of total detected maize root proteins (67 out of 700) were up- or down-regulated by arsenic, among which 20 were selected as being quite reproducibly affected by the metalloid. These were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 11 of them could be identified by comparing their peptide mass fingerprints against protein- and expressed sequence tag-databases. The set of identified maize root proteins highly responsive to arsenic exposure included a major and functionally homogeneous group of seven enzymes involved in cellular homeostasis for redox perturbation (e.g., three superoxide dismutases, two glutathione peroxidases, one peroxiredoxin, and one p-benzoquinone reductase) besides four additional, functionally heterogeneous, proteins (e.g., ATP synthase, succinyl-CoA synthetase, cytochrome P450 and guanine nucleotide-binding protein beta subunit). These findings strongly suggest that the induction of oxidative stress is a main process underlying arsenic toxicity in plants.  相似文献   

12.
Aminoacyl-tRNA synthetases (AARSs) play a critical role in translation and are thus required in three plant protein-synthesizing compartments: cytosol, mitochondria and plastids. A systematic study had previously shown extensive sharing of organellar AARSs from Arabidopsis thaliana, mostly between mitochondria and chloroplasts. However, distribution of AARSs from monocot species, such as maize, has never been experimentally investigated. Here we demonstrate dual targeting of maize seryl-tRNA synthetase, SerZMo, into both mitochondria and chloroplasts using combination of complementary methods, including in vitro import assay, transient expression analysis of green fluorescent protein (GFP) fusions and immunodetection. We also show that SerZMo dual localization is established by the virtue of an ambiguous targeting peptide. Full-length SerZMo protein fused to GFP is targeted to chloroplast stromules, indicating that SerZMo protein performs its function in plastid stroma. The deletion mutant lacking N-terminal region of the ambiguous SerZMo targeting peptide was neither targeted into mitochondria nor chloroplasts, indicating the importance of this region in both mitochondrial and chloroplastic import.  相似文献   

13.
The secondary structures of metazoan mitochondrial (mt) tRNAs(Ser) deviate markedly from the paradigm of the canonical cloverleaf structure; particularly, tRNA(Ser)(GCU) corresponding to the AGY codon (Y=U and C) is highly truncated and intrinsically missing the entire dihydrouridine arm. None of the mt serine isoacceptors possesses the elongated variable arm, which is the universal landmark for recognition by seryl-tRNA synthetase (SerRS). Here, we report the crystal structure of mammalian mt SerRS from Bos taurus in complex with seryl adenylate at an atomic resolution of 1.65 A. Coupling structural information with a tRNA-docking model and the mutagenesis studies, we have unraveled the key elements that establish tRNA binding specificity, differ from all other known bacterial and eukaryotic systems, are the characteristic extensions in both extremities, as well as a few basic residues residing in the amino-terminal helical arm of mt SerRS. Our data further uncover an unprecedented mechanism of a dual-mode recognition employed to discriminate two distinct 'bizarre' mt tRNAs(Ser) by alternative combination of interaction sites.  相似文献   

14.
We present evidence of two peroxidases in maize (Zea mays L.) mitochondria. One of these uses guaiacol and the other uses cytochrome c as the electron donor. Treatments of fresh mitochondria with protease(s) indicate that ascorbate and glutathione peroxidases are likely bound to the mitochondria as cytosolic contaminants, whereas guaiacol and cytochrome peroxidases are localized within the mitochondria. These two mitochondrial peroxidases are distinct from contaminant peroxidases and mitochondrial electron transport enzymes. Cytochrome peroxidase is present within the mitochondrial membranes, whereas guaiacol peroxidase is loosely bound to the mitochondrial envelope. Unlike other cellular guaiacol peroxidases, mitochondrial guaiacol peroxidase is not glycosylated. Digestion of lysed mitochondria with trypsin activated mitochondrial guaiacol peroxidase but inhibited cytochrome peroxidase. Isoelectric focusing gel analysis indicated guaiacol peroxidase as a major isozyme (isoelectric point 6.8) that is also activated by trypsin. No change in the mobility of guaiacol peroxidase due to trypsin treatment on native polyacrylamide gel electrophoresis was observed. Although both peroxidases are induced by chilling acclimation treatments (14[deg]C), only cytochrome peroxidase is also induced by chilling (4[deg]C). Because chilling induces oxidative stress in the maize seedlings and the mitochondria are a target for oxidative stress injury, we suggest that mitochondrial peroxidases play a role similar to catalase in protecting mitochondria from oxidative damage.  相似文献   

15.
Ustilago maydis is a biotrophic fungus that induces formation of tumors in maize (Zea mays L). In a recent study we identified See1 (Seedling efficient effector 1) as an U. maydis organ-specific effector required for tumor formation in leaves. See1 is required for U. maydis induced reactivation of plant DNA synthesis during leaf tumor progression. The protein is secreted from biotrophic hyphae and localizes to the cytoplasm and nucleus of plant cell. See1 interacts with maize SGT1, a cell cycle and immune regulator, interfering with its MAPK-triggered phosphorylation. Here, we present new data on the conservation of See1 in other closely related smuts and experimental data on the functionality of See1 ortholog in Ustilago hordei, the causal agent of barley covered smut disease.  相似文献   

16.
The deviation of prophase cytoskeletal ring formation was determined during meiotic division in 50% of pollen mother cells (PMCs) in maize haploid No 1498 (Zea mays). At prophase in both meiotic divisions the cytoskeletal ring is formed in cortical region of cytoplasm instead of perinuclear. Sometimes formation of both perinuclear and cortical rings is observed in the same cell. It has been shown that in multinucleate PMCs the cortical ring leads to the consolidation of chromosomes into common spindle and to meiotic restitution.  相似文献   

17.
A two-dimensional proteome map of maize endosperm   总被引:8,自引:0,他引:8  
We have established a proteome reference map for maize (Zea mays L.) endosperm by means of two-dimensional gel electrophoresis and protein identification with LC-MS/MS analysis. This investigation focussed on proteins in major spots in a 4-7 pI range and 10-100 kDa M(r) range. Among the 632 protein spots processed, 496 were identified by matching against the NCBInr and ZMtuc-tus databases (using the SEQUEST software). Forty-two per cent of the proteins were identified against maize sequences, 23% against rice sequences and 21% against Arabidopsis sequences. Identified proteins were not only cytoplasmic but also nuclear, mitochondrial or amyloplastic. Metabolic processes, protein destination, protein synthesis, cell rescue, defense, cell death and ageing are the most abundant functional categories, comprising almost half of the 632 proteins analyzed in our study. This proteome map constitutes a powerful tool for physiological studies and is the first step for investigating the maize endosperm development.  相似文献   

18.
The Nicaraguan teosinte Zea nicaraguensis was studied cytologically to determine its chromosome number and C-banding pattern. The C-banding pattern was compared with that of the close relative Zea luxurians as well as with Zea diploperennis and cultivated maize, Zea mays ssp. mays. Karyograms were constructed for the four Zea species. It is shown that Z. nicaraguensis, like most other Zea species, is a diploid with 2n=20 chromosomes. The C-banding pattern shows that Z. nicaraguensis is very similar to Z. luxurians and more similar to Z. luxurians than to Z. diploperennis and cultivated maize. Whether or not Z. nicaraguensis and Z. luxurians should be regarded as subspecies instead of individual species is, however, not possible to conclude from this study.  相似文献   

19.
BD-cellulose and RPC-5 chromatography of tRNA isolated from lactating bovine mammary gland showed the presence of four seryl-tRNA isoacceptors. The species, tRNA IV Ser, with the strongest affinity for BD-cellulose (required ethanol in the elution buffer) could be phosphorylated in the presence of serine, [gamma-32 P]-ATP, seryl-tRNA synthetase and phosphotransferase activity from the same tissue. O-Phosphoserine was identified as the 32P-labelled product after mild alkaline hydrolysis of this aminoacylated tRNA. Pancreatic ribonuclease treatment of the aminoacylated tRNA yielded a labelled product which was identified as phosphoseryladenosine. These results indicated there is a specific phosphoseryl tRNA species in lactating bovine mammary gland. It appears that the formation of phosphoseryl-tRNA proceeds by enzymic phosphorylation of seryl-tRNA.  相似文献   

20.
H Hilton  B S Gaut 《Genetics》1998,150(2):863-872
The grass genus Zea contains the domesticate maize and several wild taxa indigenous to Central and South America. Here we study the genetic consequences of speciation and domestication in this group by sampling DNA sequences from four taxa-maize (Zea mays ssp. mays), its wild progenitor (Z. mays ssp. parviglumis), a more distant species within the genus (Z. luxurians), and a representative of the sister genus (Tripsacum dactyloides). We sampled a total of 26 sequences from the glb1 locus, which encodes a nonessential seed storage protein. Within the Zea taxa sampled, the progenitor to maize contains the most sequence diversity. Maize contains 60% of the level of genetic diversity of its progenitor, and Z. luxurians contains even less diversity (32% of the level of diversity of Z. mays ssp. parviglumis). Sequence variation within the glb1 locus is consistent with neutral evolution in all four taxa. The glb1 data were combined with adh1 data from a previous study to make inferences about the population genetic histories of these taxa. Comparisons of sequence data between the two morphologically similar wild Zea taxa indicate that the species diverged approximately 700, 000 years ago from a common ancestor of intermediate size to their present populations. Conversely, the domestication of maize was a recent event that could have been based on a very small number of founding individuals. Maize retained a substantial proportion of the genetic variation of its progenitor through this founder event, but diverged rapidly in morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号