首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since its introduction to control overabundant invasive European rabbits (Oryctolagus cuniculus), the highly virulent rabbit haemorrhagic disease virus (RHDV) has caused regular annual disease outbreaks in Australian rabbit populations. Although initially reducing rabbit abundance by 60%, continent‐wide, experimental evidence has since indicated increased genetic resistance in wild rabbits that have experienced RHDV‐driven selection. To identify genetic adaptations, which explain the increased resistance to this biocontrol virus, we investigated genome‐wide SNP (single nucleotide polymorphism) allele frequency changes in a South Australian rabbit population that was sampled in 1996 (pre‐RHD genomes) and after 16 years of RHDV outbreaks. We identified several SNPs with changed allele frequencies within or close to genes potentially important for increased RHD resistance. The identified genes are known to be involved in virus infections and immune reactions or had previously been identified as being differentially expressed in healthy versus acutely RHDV‐infected rabbits. Furthermore, we show in a simulation study that the allele/genotype frequency changes cannot be explained by drift alone and that several candidate genes had also been identified as being associated with surviving RHD in a different Australian rabbit population. Our unique data set allowed us to identify candidate genes for RHDV resistance that have evolved under natural conditions, and over a time span that would not have been feasible in an experimental setting. Moreover, it provides a rare example of host genetic adaptations to virus‐driven selection in response to a suddenly emerging infectious disease.  相似文献   

2.
Rabbit haemorrhagic disease virus (RHDV) is a highly virulent lagovirus endemic in Europe and Australasian populations of the European rabbit, Oryctolagus cuniculus. It has also caused several unexplained disease outbreaks in domestic European rabbits in North America. Non-pathogenic spread of RHDV leading to persistent infection which later reactivated has recently been proposed as the cause of overt disease and death of a pet rabbit in Canada, the first confirmed case of Rabbit haemorrhagic disease in that country. We suggest that there is little evidence to support non-pathogenic spread of virulent RHDV, some evidence that is contradictory, and evidence to support a simpler alternative hypothesis. RHDV can be spread over long distances between sparse rabbit populations by fomites or flying insects. Although highly pathogenic, RHDV can be limited in its spread within rabbit populations, or its presence masked by closely related but non-pathogenic lagoviruses which can provide protection against acute disease. In the absence of any evidence from clinical studies to support reactivation of persistent RHDV infection, the simpler explanation seems more likely to be correct.  相似文献   

3.
Deciphering the genes involved in disease resistance is essential if we are to understand host–pathogen coevolutionary processes. The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus). During the first outbreaks of the disease, RHDV caused mortality rates of up to 97%. Recently, however, increased genetic resistance to RHDV has been reported. Here, we have aimed to identify genomic differences between rabbits that survived a natural infection with RHDV and those that died in the field using a genomewide next‐generation sequencing (NGS) approach. We detected 72 SNPs corresponding to 133 genes associated with survival of a RHD infection. Most of the identified genes have known functions in virus infections and replication, immune responses or apoptosis, or have previously been found to be regulated during RHD. Some of the genes identified in experimental studies, however, did not seem to play a role under natural selection regimes, highlighting the importance of field studies to complement the genomic background of wildlife diseases. Our study provides a set of candidate markers as a tool for the future scanning of wild rabbits for their resistance to RHDV. This is important both for wild rabbit populations in southern Europe where RHD is regarded as a serious problem decimating the prey of endangered predator species and for assessing the success of currently planned RHDV variant biocontrol releases in Australia.  相似文献   

4.
The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus cuniculus). During the first disease outbreaks, RHDV caused mortality rates of up to 97% and reduced Australian rabbit numbers to very low levels. However, recently increased genetic resistance to RHDV and strong population growth has been reported. Major histocompatibility complex (MHC) class I immune genes are important for immune responses against viruses, and a high MHC variability is thought to be crucial in adaptive processes under pathogen-driven selection. We asked whether strong population bottlenecks and presumed genetic drift would have led to low MHC variability in wild Australian rabbits, and if the retained MHC variability was enough to explain the increased resistance against RHD. Despite the past bottlenecks we found a relatively high number of MHC class I sequences distributed over 2–4 loci. We identified positive selection on putative antigen-binding sites of the MHC. We detected evidence for RHDV-driven selection as one MHC supertype was negatively associated with RHD survival, fitting expectations of frequency-dependent selection. Gene duplication and pathogen-driven selection are possible (and likely) mechanisms that maintained the adaptive potential of MHC genes in Australian rabbits. Our findings not only contribute to a better understanding of the evolution of invasive species, they are also important in the light of planned future rabbit biocontrol in Australia.  相似文献   

5.
Vaccines against rabbit haemorrhagic disease virus (RHDV) are commercially produced in experimentally infected rabbits. A genetically engineered and manufactured version of the major structural protein of RHDV (VP60) is considered to be an alternative approach for vaccine production. Plants have the potential to become an excellent recombinant production system, but the low expression level and insufficient immunogenic potency of plant‐derived VP60 still hamper its practical use. In this study, we analysed the expression of a novel multimeric VP60‐based antigen in four different plant species, including Nicotiana tabacum L., Solanum tuberosum L., Brassica napus L. and Pisum sativum L. Significant differences were detected in the expression patterns of the novel fusion antigen cholera toxin B subunit (CTB)::VP60 (ctbvp60SEKDEL) at the mRNA and protein levels. Pentameric CTB::VP60 molecules were only detected in N. tabacum and P. sativum, and displayed equal levels of CTB, at approximately 0.01% of total soluble protein (TSP), and traces of detectable VP60. However, strong enhancement of the CTB protein content via self‐fertilization was only observed in P. sativum, where it reached up to 0.7% of TSP. In rabbits, a strong decrease in the protective vaccine dose required from 48–400 µg potato‐derived VP60 [ Castanon, S., Marin, M.S., Martin‐Alonso, J.M., Boga, J.A., Casais, R., Humara, J.M., Ordas, R.J. and Parra, F. (1999) Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J. Virol. 73 , 4452–4455; Castanon, S., Martin‐Alonso, J.M., Marin, M.S., Boga, J.A., Alonso, P., Parra, F. and Ordas, R.J. (2002) The effect of the promoter on expression of VP60 gene from rabbit hemorrhagic disease virus in potato plants. Plant Sci. 162 , 87–95] to 0.56–0.28 µg antigenic VP60 (measured with VP60 enzyme‐linked immunosorbent assay) of crude CTB::VP60 pea extracts was demonstrated. Rabbits immunized with pea‐derived CTB::VP60 showed anti‐VP60‐specific antibodies, similar to RikaVacc®‐immunized rabbits, and survived RHDV challenge.  相似文献   

6.
Several studies have shown that classical results of microparasite evolution could not extend to the case where the host species shows an important spatial structure. Rabbit haemorrhagic disease virus (RHDV), responsible for rabbit haemorrhagic disease (RHD), which recently emerged in rabbits, has strains within a wide range of virulence, thus providing an interesting example of competition between strains infecting a host species with a metapopulation structure. In addition, rabbits may show a genetic diversity regarding RHDV susceptibility. In the present paper we use the example of the rabbit-RHDV interaction to study the competition between strains of a same microparasite in a host population that is both spatially and genetically structured. Using metapopulation models we show that the evolution of the microparasite is guided by a trade-off between its capacity to invade subpopulations potentially infected by other strains and its capacity to persist within the subpopulation. In such a context, host genetic diversity acts by reducing the number of hosts susceptible to each strain, often favouring more persistent—and generally less virulent—strains. We also show that even in a stochastic context where host genes regularly go locally extinct, the microparasite pressure helps maintain the genetic diversity in the long term while reinforcing gene loss risk in the short term. Finally, we study how different demographic and epidemiologic parameters affect the coevolution between the rabbit and RHDV.  相似文献   

7.
目的将兔出血症病毒(RHDV)VP60全长基因在昆虫细胞-杆状病毒系统中表达,验证重组蛋白形成病毒样颗粒(VLPs)的能力及其生物学特性,探讨VLPs作为检测抗原及亚单位疫苗的潜力。方法用Bac-to-Bac系统体外表达RHDVVP60全长基因。以免疫荧光及Western blotting检测蛋白表达情况及确定蛋白最佳表达条件;免疫电镜观察VLPs形态,并对VLPs的血凝性、免疫原性进行检测。结果SDS-PAGE电泳分析表明,表达的重组蛋白分子量大小约为68KDa,在免疫荧光、琼脂扩散、ELISA试验中均与RHD多克隆抗血清特异性反应;接种重组病毒的Sf9细胞裂解液在电镜下可观察到与RHDV形态相似的VLPs;该VLPs可凝集人“O”、“B”型红细胞,凝集可被RHD多克隆抗血清所抑制;含VLPs的Sf9细胞裂解液可不经纯化用作间接ELISA抗原,所建立的ELISA方法与进口商品化试剂盒相比,特异性良好,敏感性、检出率稍低;将含VLPs的细胞裂解液加氟氏佐剂免疫兔,HI效价可达1∶40,可经受致死量病毒攻击。结论RHDV-VLPs的获得及其良好的免疫原性,为RHD血清学检测试剂的标准化、亚单位疫苗研制应用奠定基础,同时在转移载体及RHDV受体方面研究亦有潜在应用价值。  相似文献   

8.
目的检测全省六个实验兔场的兔子所携带的兔出血症病毒(RHDV)情况,调查实验兔RHDV抗体水平,评价不同疫苗的免疫效果,比较HAI与ELISA两种方法的符合率。方法采用HAI、ELISA方法对1168份实验兔RHDV抗体进行了检测,并与RT-PCR方法的检测结果进行对比分析。结果我省实验兔免疫情况较好,不同饲养场的实验兔免疫合格率虽有不同,但未发生疫情。通过比较发现ELISA法检测的抗体合格率明显高于HAI法。结论LISA、HAI和RT-PCR方法均适合实验兔RHDV的检测。  相似文献   

9.
Antibodies raised against a Lagovirus were found in healthy rabbits Oryctolagus cuniculus sampled in 2003 and 2004 in the Kerguelen archipelago. The serological test we used enabled the detection of antibodies due to both pathogenic and non-pathogenic viruses related to the rabbit haemorrhagic disease virus (RHDV). The overall proportion of seropositive rabbits was 35% and differed between sites. Since previous studies have failed to detect antibodies raised against pathogenic RHDV strains, the antibodies detected in the present study were likely due to non-pathogenic strains. The interest of these strains circulating in the Kerguelen archipelago is that they have evolved independently of those detected in the other parts of the world and should derive from an ancestral RHDV precursor. Their characterization may help understanding the evolution of the virus and the emergence of the disease.  相似文献   

10.
兔出血症病毒细胞培养的初步研究   总被引:4,自引:0,他引:4  
吉传义  杜念兴 《病毒学报》1992,8(3):252-256
  相似文献   

11.
The frequency and timing of rabbit haemorrhagic disease (RHD) epizootics and their impact on different age groups of rabbits were studied for 15 years in a recovering rabbit population in South Australia. We recorded the number and body size of rabbits dying during RHD epizootics, collected tissue for genetic analysis of rabbit haemorrhagic disease virus variants and compared the number of carcasses found to the number of susceptible rabbits present at the beginning of each epizootic. All RHD epizootics occurred between late winter and spring, but, progressively, epizootics started earlier and became more frequent and prolonged, fewer susceptible adult rabbits were present during epizootics, and the age of rabbits dying of RHD declined. Increased infection and virus shedding in juvenile rabbits offers the most plausible explanation for those epidemiological changes; the disease is now increasingly transmitted through populations of kittens, starting before young-of-the-year reach adult size and persisting late in the breeding season, so that most rabbits are challenged in their year of birth. These changes have increased juvenile mortality due to RHD but reduced total mortality across all age groups, because age-specific mortality rates are lower in young rabbits than in older rabbits. We hypothesise that this may be the proximate cause of recovery in rabbit populations across Australia and possibly elsewhere.  相似文献   

12.
We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.  相似文献   

13.
Virus‐like particles have proved to be excellent molecular scaffolds, yet the individual characteristics and immune responses generated against each VLP requires the development of a wide range of capsids for use as vaccines, molecular delivery vessels, and nanoscale templates. Here we describe the development of Rabbit haemorrhagic disease virus (RHDV)‐like particles as a rapidly versatile molecular workbench, overcoming limitations imposed by established genetic antigen incorporation procedures with chimeric VLP. Production of the RHDV capsid protein in a baculovirus system led to the self‐assembly of VLP which were recovered at over 99% purity and manipulated both genetically and chemically. Fusion of small peptide sequences to RHDV VLP was well tolerated, forming chimeric capsids that enhanced the presentation of foreign peptide to hybridoma T helper cells 700‐fold. Rapid and simple conjugation techniques employing the hetero‐bifunctional chemical linker sulfo‐SMCC enabled both small peptides and whole proteins to be conjugated to the surface of RHDV VLP, overcoming limitations imposed on VLP formation and yield experienced with chimeric VLP. Administration of VLP/ovalbumin conjugate provoked high titre ovalbumin‐specific antibody in mice, demonstrating the immune stimulatory properties of the capsid were conferred to conjugated foreign antigen. VLP facilitated delivery of conjugated antigen to dendritic cells, eliciting proliferative responses in naïve TCR transgenic T helper cells that were at least 10‐fold greater than ovalbumin antigen delivered alone. Biotechnol. Bioeng. 2007;98: 968–977. © 2007 Wiley Periodicals, Inc.  相似文献   

14.
中国株和德国株兔出血症病毒的基因组比较   总被引:9,自引:0,他引:9  
崔治中  段玉友 《病毒学报》1995,11(3):242-247
  相似文献   

15.
The European rabbit (Oryctolagus cuniculus) is one of the most important vertebrate species in the Mediterranean Basin ecosystem. Over the last 60 years, the arrival of two viral diseases, myxomatosis and rabbit haemorrhagic disease, have led to dramatic declines in wild rabbit populations across the Iberian Peninsula. These diseases are currently endemic. Periodic outbreaks occur and have significant impacts on wild populations. Both infection types have diverse physiological effects on their hosts that are rooted in aerobic metabolic processes. To fight off these viruses, rabbits activate their immune systems. However, the production of immune defences generates reactive oxygen species that may consequently damage host tissues. Hypothesising that immune responses increase oxidative stress, we examined whether wild rabbits naturally infected with myxoma virus (MV) and rabbit haemorrhagic disease virus (RHDV) had high oxidative stress. Using blood samples, we measured anti-MV and anti-RHDV antibody concentrations and different oxidative stress markers (i.e., glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and malondialdehyde). Our results show that rabbits that were seropositive for both MV and RHDV had high concentrations of malondialdehyde. Age and body condition were also positively related to dual seropositivity. No significant relationships were observed between serostatus and the concentrations of the other oxidative stress markers. Although we expected infection with MV and RHDV to be correlated with oxidative stress, the influence of external sources of oxidative stress (e.g., climatic conditions) likely made it more difficult to detect such relationships in wild rabbits.  相似文献   

16.
用对流电泳提纯兔出血症病毒   总被引:2,自引:0,他引:2  
兔出血症病毒(RHDV)在pH8.6的琼脂糖凝胶上电泳,在负极侧有一血凝峰,免疫电镜观察有大硅RHDV颗粒,证实RHDV病毒粒子带正电荷。利用这一特性可用对流电泳提纯病毒。将抗体与病毒颗粒形成的沉淀带切下,作SDS-PAGE,经免疫转印出现6条区带,其中60kD的VP_1为主要结构多肽。用免疫复合物提取核酸,以狄高辛标记制成探针,能与病毒核酸和克隆的RHDVcDNA2.2kb片段和4.8kb片段杂交,探针灵敏度达pg水平。能用病毒核酸作模板制备探针,证实RHDV的核酸为DNA。  相似文献   

17.
In the present study, a bivalent vaccine against Pasteurella multocida and rabbit hemorrhagic disease virus (RHDV) was formulated with Montanide™ ISA70 oil adjuvant (Seppic, Paris, France). Its efficacy was evaluated and compared to similar monovalent preparations and commercially available monovalent vaccines. White new Zeeland rabbit groups (n = 10) received 2 successive doses of the tested vaccines and were challenged 2 weeks after 2nd dose with Pasteurella multocida and RHDV or either pathogens according to their vaccination schedule. Challenged not-vaccinated group of rabbits (n = 10) was included as a control. The bivalent and monovalent ISA70 preparations were found stable, safe, sterile, pure and of low viscosity. Group 3 (GP3) which received bivalent vaccine showed the highest antibody geometric mean titers against Pasteurella multocida and RHDV evaluated by ELISA and hemagglutination inhibition (HI) respectively. Following virulent challenge; Gp3 rabbits were 90% protected from challenge over other groups that showed 80% protection. Detection of either pathogen in the livers of dead and euthanized rabbits had failed except for non-vaccinated controls. The bivalent vaccine candidate was fully protective. Immunization against both pathogens can be achieved by single vaccination.  相似文献   

18.
Rabbit Hemorrhagic disease virus (RHDV), a calicivirus of the Lagovirus genus, and responsible for rabbit hemorrhagic disease (RHD), kills rabbits between 48 to 72 hours post infection with mortality rates as high as 50-90%. Caliciviruses, including noroviruses and RHDV, have been shown to bind histo-blood group antigens (HBGA) and human non-secretor individuals lacking ABH antigens in epithelia have been found to be resistant to norovirus infection. RHDV virus-like particles have previously been shown to bind the H type 2 and A antigens. In this study we present a comprehensive assessment of the strain-specific binding patterns of different RHDV isolates to HBGAs. We characterized the HBGA expression in the duodenum of wild and domestic rabbits by mass spectrometry and relative quantification of A, B and H type 2 expression. A detailed binding analysis of a range of RHDV strains, to synthetic sugars and human red blood cells, as well as to rabbit duodenum, a likely gastrointestinal site for viral entrance was performed. Enzymatic cleavage of HBGA epitopes confirmed binding specificity. Binding was observed to blood group B, A and H type 2 epitopes in a strain-dependent manner with slight differences in specificity for A, B or H epitopes allowing RHDV strains to preferentially recognize different subgroups of animals. Strains related to the earliest described RHDV outbreak were not able to bind A, whereas all other genotypes have acquired A binding. In an experimental infection study, rabbits lacking the correct HBGA ligands were resistant to lethal RHDV infection at low challenge doses. Similarly, survivors of outbreaks in wild populations showed increased frequency of weak binding phenotypes, indicating selection for host resistance depending on the strain circulating in the population. HBGAs thus act as attachment factors facilitating infection, while their polymorphism of expression could contribute to generate genetic resistance to RHDV at the population level.  相似文献   

19.
Aim To explore the influence of an emerging infectious disease (EID) affecting a prey species on the spatial patterns and temporal shifts in the diet of a predator over a large geographical scale. We reviewed studies on the diet of Bonelli’s eagles (Hieraaetus fasciatus) in order to determine the repercussions of the reduction in the density of its main prey, the rabbit (Oryctolagus cuniculus), caused by outbreaks of rabbit haemorrhagic disease (RHD) since 1988. Location Western continental Europe. Methods We compiled published and unpublished information on the diet of breeding Bonelli’s eagles from Portugal, Spain and France for a 39‐year study period (1968–2006). Nonparametric tests were used in order to analyse temporal shifts in diet composition and trophic diversity (H′) between the periods of ‘high’ (before outbreak of RHD) and ‘low’ rabbit density (after outbreak of RHD). A combination of hierarchical agglomerative clustering and non‐metric multidimensional scaling (NMDS) analyses were used to test for the existence of geographical patterns in the diet of Bonelli’s eagles in each period. Results The diet of the Bonelli’s eagle consisted of rabbit (28.5%), pigeons (24.0%), partridges (15.3%), ‘other birds’ (11.6%), ‘other mammals’ (7.1%), corvids (7.0%), and herptiles (6.4%). However, RHD had large consequences for its feeding ecology: the consumption of rabbits decreased by one‐third after the outbreak of RHD. Conversely, trophic diversity (H′) increased after outbreak of RHD. At the same time, the analyses showed clear geographical patterns in the diet of the Bonelli’s eagle before, but not after, RHD outbreak. Main conclusions Geographical patterns in the diet of the Bonelli’s eagle in western Europe seem to be driven mainly by spatio‐temporal variation in the abundance of rabbits and, to a lesser extent, by the local (territorial) environmental features conditioning the presence and density of alternative prey species. We show that an EID can disrupt predator–prey relationships at large spatial and temporal scales through a severe decline in the population of the main prey species. Hence we argue that strict guidelines should be drawn up to prevent human‐aided dissemination of ‘pathogen pollution’, which can threaten wildlife not only at the population and species level but also at the community and ecosystem scale.  相似文献   

20.
兔的一种新病毒:...   总被引:1,自引:0,他引:1  
赵林  李天宪 《微生物学报》1992,32(5):359-363
In the spring 1986, an acute infectious disease occurred in Wuhan Second Producing Medical Manufactory, and the rabbit almost died. We tested the mortal symptom and confirmed rabbit Hemorrhagic Disease (RHD) as same as Huang Yinyao report. Hubei Traditional Chinese Medicine Institute appear this RHD also. After we purified virus of above two source by low speed, high speed and sucrose density gradient centrifugation, they can react with antiserum of RHDV from Nanjing Agricultural University in agar gel immunodiffusion tests. These results proved that they belong to the same serotype. Data indicate RHDV have difference morphological superstructure, viral polypeptides and especially RHDV can't react with antiserum of standard Parvovirus of rabbit and so on, so we suggest RHDV is a new virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号