首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic diversity and phylogenetic relationships among 568 individuals of two red jungle fowl subspe- cies (Gallus gallus spadiceus in China and Gallus gallus gallus in Thailand) and 14 Chinese domestic chicken breeds were evaluated with 29 microstaellite loci, the genetic variability within population and genetic differentiation among population were estimated, and then genetic diversity and phylogenetic relationships were analyzed among red jungle fowls and Chinese domestic fowls. A total of 286 alleles were detected in 16 population with 29 microsatellite markers and the average number of the alleles observed in 29 microsatellite loci was 9.86±6.36. The overall expected heterozygosity of all population was 0.6708±0.0251, and the number of population deviated from Hardy-Weinberg equilibrium per locus ranged from 0 to 7. In the whole population, the average of genetic differentiation among population, measured as FST value, was 16.7% (P<0.001), and all loci contributed significantly (P<0.001) to this differentiation. It can also be seen that the deficit of heterozygotes was very high (0.015) (P<0.01). Reynolds' distance values varied between 0.036 (Xiaoshan chicken-Luyuan chicken pair) and 0.330 (G. gallus gallus-Gushi chicken pair). The Nm value ranged from 0.533 (between G. gallus gallus and Gushi chicken) to 5.833 (between Xiaoshan chicken and Luyuan chicken). An unrooted consensus tree was constructed using the neighbour-joining method and the Reynolds' genetic distance. The heavy-body sized chicken breeds, Luyuan chicken, Xiaoshan chicken, Beijing Fatty chicken, Henan Game chicken, Huainan Partridge and Langshan chicken formed one branch, and it had a close genetic relationship between Xiaoshan chicken-Luyuan chicken pair and Chahua chicken-Tibetan chicken pair. Chahua chicken and Tibetan chicken had closer genetic relationship with these two subspecies of red jungle fowl than other domestic chicken breeds. G. gallus spadiceus showed closer phylogenetic relationship with Chinese domestic chicken breeds than G. gallus gallus. All 29 microstaellite loci in this study showed high levels of polymorphism and significant genetic differentiation was observed among two subspecies of red jungle fowl and 14 Chinese domestic chicken breeds. The evolutional dendrogram is as follows: evolutional breeds→primitive breeds (Chahua chicken and Tibetan)→red jungle fowl in China (G. gallus spadiceus)→red jungle fowl in Thailand (G. gallus gallus). The results supported the theory that the domestic fowls might originate from different subspecies of red jungle fowl and Chinese domestic fowls had independent origin.  相似文献   

2.
中国红原鸡和泰国红原鸡遗传多样性分析   总被引:9,自引:0,他引:9  
利用29个微卫星DNA标记对来自中国的红原鸡Gallus gallus spadiceus亚种和来自泰国的红原鸡Gallus gallus gallus亚种进行遗传多样性分析, 评估亚种内的遗传变异和亚种间的遗传分化, 结果表明: 共检测到168个等位基因, 每个位点的等位基因数从2到13不等, 所有位点平均的期望杂合度和PIC值分别为0.5780和0.53。中国和泰国红原鸡29个微卫星位点平均有效等位基因数分别为3.79和4.79, 平均基因杂合度为0.5379和0.6385, 两个红原鸡亚种均表现出较高的群体杂合度和丰富的遗传多样性。群体分化系数为19.4%(P<0.01), 两个红原鸡亚种间的Reynolds’遗传距离和Nm值分别为0.157和1.040。由此可见, Gallus gallus spadiceus亚种和Gallus gallus gallus亚种群体具有不同的群体遗传结构, 群体之间存在明显的遗传分化, 并不能将其认定为是同一亚种, 这也为中国家鸡具有独立的起源提供了一定的佐证。  相似文献   

3.
4.
The present study was conducted to assess the genetic diversity, population structure, and relatedness in Indian red jungle fowl (RJF, Gallus gallus murgi) from northern India and three domestic chicken populations (gallus gallus domesticus), maintained at the institute farms, namely White Leghorn (WL), Aseel (AS) and Red Cornish (RC) using 25 microsatellite markers. All the markers were polymorphic, the number of alleles at each locus ranged from five (MCW0111) to forty-three (LEI0212) with an average number of 19 alleles per locus. Across all loci, the mean expected heterozygosity and polymorphic information content were 0.883 and 0.872, respectively. Population-specific alleles were found in each population. A UPGMA dendrogram based on shared allele distances clearly revealed two major clusters among the four populations; cluster I had genotypes from RJF and WL whereas cluster II had AS and RC genotypes. Furthermore, the estimation of population structure was performed to understand how genetic variation is partitioned within and among populations. The maximum ?K value was observed for K = 4 with four identified clusters. Furthermore, factorial analysis clearly showed four clustering; each cluster represented the four types of population used in the study. These results clearly, demonstrate the potential of microsatellite markers in elucidating the genetic diversity, relationships, and population structure analysis in RJF and domestic chicken populations.  相似文献   

5.
A new family of related endogenous proviruses, existing at 50 to 100 copies per haploid genome and distinguishable by remarkably short long terminal repeats, has been described for domestic chickens (Gallus gallus subsp domesticus). In this communication, by using Southern blot analysis and probes derived from both internal viral sequences and locus-specific, cellular flanking sequences, we studied the genetic distribution of this family of moderately repetitive avian endogenous retroviruses within the genomes of four Gallus species. Eight inbred lines of domestic chickens, the evolutionary progenitor to the domestic chicken (red jungle fowl), and two more distantly related species (grey and green jungle fowl) were studied. All Gallus species harbored this class of elements, although the different lines of domestic chickens and different species of jungle fowl bore distinguishable complements of the proviral loci. Jungle fowl appeared to have fewer copies than domestic chickens. For three randomly isolated proviral loci, domestic chickens (G. gallus subsp. domesticus) and red jungle fowl (G. gallus subsp. gallus) showed only a proviral state, whereas the most primitive and divergent of the jungle fowl, the green jungle fowl (G. varius), consistently demonstrated only preintegration states or disparate alleles. The presence of this family in all Gallus species and of related sequences in other genera suggests that a primordial founding integration event occurred prior to the evolutionary separation of Gallus species and possibly related genera. Additionally, at least one proviral locus has been acquired subsequent to speciation, indicating that this family was actively infectious after the primary founding event. This conserved, repetitive proviral family appears to represent the vestigial remnant of an avian retrovirus class related to and evolutionarily more ancient than the Rous-associated virus-0 family of avian endogenous retroviruses.  相似文献   

6.
7.
8.
 HLA-G is a nonclassical major histocompatibility complex (MHC) class I molecule that is expressed only in the human placenta, suggesting that it plays an important role at the fetal-maternal interface. In rhesus monkeys, which have similar placentation to humans, the HLA-G orthologue is a pseudogene. However, rhesus monkeys express a novel placental MHC class I molecule, Mamu-AG, which has HLA-G-like characteristics. Phylogenetic analysis of AG alleles in two Old World primate species, the baboon and the rhesus macaque, revealed limited diversity characteristic of a nonclassical MHC class I locus. Gene trees constructed using classical and nonclassical primate MHC class I alleles demonstrated that the AG locus was most closely related to the classical A locus. Interestingly, gene tree analyses suggested that the AG alleles were most closely related to a subset of A alleles which are the products of an ancestral interlocus recombination event between the A and B loci. Calculation of the rates of synonymous and nonsynonymous substitution at the AG locus revealed that positive selection was not acting on the codons encoding the peptide binding region. In exon 4, however, the rate of nonsynonymous substitution was significantly lower than the rate of synonymous substitution, suggesting that negative selection was acting on these codons. Received: 22 April 1998 / Revised: 15 July 1998  相似文献   

9.
There have been significant evolutionary pressures on the chicken during both its speciation and its subsequent domestication by man. Infectious diseases are expected to have exerted strong selective pressures during these processes. Consequently, it is likely that genes associated with disease susceptibility or resistance have been subject to some form of selection. Two genes involved in the immune response (interferon-γ and interleukin 1-β) were selected for sequencing in diverse chicken populations from Pakistan, Sri Lanka, Bangladesh, Kenya, Senegal, Burkina Faso and Botswana, as well as six outgroup samples (grey, green, red and Ceylon jungle fowl and grey francolin and bamboo partridge). Haplotype frequencies, tests of neutrality, summary statistics, coalescent simulations and phylogenetic analysis by maximum likelihood were used to determine the population genetic characteristics of the genes. Networks indicate that these chicken genes are most closely related to the red jungle fowl. Interferon-γ had lower diversity and considerable coding sequence conservation, which is consistent with its function as a key inflammatory cytokine of the immune response. In contrast, the pleiotropic cytokine interleukin 1-β had higher diversity and showed signals of balancing selection moderated by recombination, yielding high numbers of diverse alleles, possibly reflecting broader functionality and potential roles in more diseases in different environments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

10.
By determining the nucleotide sequences of more than 700 cDNA clones isolated from 16 cynomolgus monkeys, we identified 26 Mafa-B alleles. In addition, nine sequences with similarity to Mamu-I alleles were identified. Since multiple Mafa-B alleles were found in each individual, it was strongly suggested that the cynomolgus MHC class I B locus might be duplicated and that the Mafa-I locus was derived from the B locus by gene duplication, as in the case of the Mamu-I locus of rhesus monkeys.  相似文献   

11.
In a project on the biodiversity of chickens funded by the European Commission (EC), eight laboratories collaborated to assess the genetic variation within and between 52 populations from a wide range of chicken types. Twenty-two di-nucleotide microsatellite markers were used to genotype DNA pools of 50 birds from each population. The polymorphism measures for the average, the least polymorphic population (inbred C line) and the most polymorphic population (Gallus gallus spadiceus) were, respectively, as follows: number of alleles per locus, per population: 3.5, 1.3 and 5.2; average gene diversity across markers: 0.47, 0.05 and 0.64; and proportion of polymorphic markers: 0.91, 0.25 and 1.0. These were in good agreement with the breeding history of the populations. For instance, unselected populations were found to be more polymorphic than selected breeds such as layers. Thus DNA pools are effective in the preliminary assessment of genetic variation of populations and markers. Mean genetic distance indicates the extent to which a given population shares its genetic diversity with that of the whole tested gene pool and is a useful criterion for conservation of diversity. The distribution of population-specific (private) alleles and the amount of genetic variation shared among populations supports the hypothesis that the red jungle fowl is the main progenitor of the domesticated chicken.  相似文献   

12.
The major histocompatibility complex (MHC) plays an important role in the immune system of vertebrates. We used the second exon of four MHC class II genes (DRA, DQA1, DQA2 and DRB3) to assess the overall MHC variation in forest musk deer (Moschus berezovskii). We also compared the MHC variation in captive and wild populations. We observed 22 alleles at four loci (four at DRA, four at DQA1, four at DQA2 and 10 at DRB3), 15 of which were newly identified alleles. Results suggest that forest musk deer maintain relatively high MHC variation, which may result from balancing selection. Moreover, considerable diversity was observed at the DRA locus. We found a high frequency of Mobe‐DRA*02, Mobe‐DQA1*01 and Mobe‐DQA2*05 alleles, which may be important for pathogen resistance. A Ewens–Watterson test showed that the DRB3 locus in the wild population had experienced recent balancing selection. We detected a small divergence at the DRA locus, suggesting the effect of weak positive selection on the DRA gene. Alternatively, this locus may be young and not yet adapted a wide spectrum of alleles for pathogen resistance. The significant heterozygosity deficit observed at the DQA1 and DRB3 loci in the captive population and at all four loci in the wild population may be the result of a population bottleneck. Additionally, MHC genetic diversity was higher in the wild population than in the captive, suggesting that the wild population may have the ability to respond to a wider range of pathogens.  相似文献   

13.
We found that the Black grouse (Tetrao tetrix) possess low numbers of Mhc class II B (BLB) and Y (YLB) genes with variable diversity and expression. We have therefore shown, for the first time, that another bird species (in this case, a wild lek-breeding galliform) shares several features of the simple Mhc of the domestic chicken (Gallus gallus). The Black grouse BLB genes showed the same level of polymorphism that has been reported in chicken, and we also found indications of balancing selection in the peptide-binding regions. The YLB genes were less variable than the BLB genes, also in accordance with earlier studies in chicken, although their functional significance still remains obscure. We hypothesize that the YLB genes could have been under purifying selection, just as the mammal Mhc-E gene cluster.  相似文献   

14.
The diversity of class II major histocompatibility complex (MHC) loci was investigated in the brushtail possum, an important marsupial pest species in New Zealand. Immunocontraception, a form of fertility control that generates an autoimmune response, is being developed as a population control method for the possum. Because the immune response is partly under genetic control, an understanding of immunogenetics in possum will be crucial to the development of immunocontraceptive vaccines. MHC molecules are critical in the vertebrate immune response. Class II MHC molecules bind and present exogenously derived peptides to T lymphocytes and may be important in the presentation of immunocontraceptives. We used polymerase chain reaction primers designed to amplify the peptide binding region of possum class II MHC genes to isolate sequences from 49 animals. We have previously described 19 novel alleles from the DAB locus in the possum (Holland et al., Immunogenetics 60:449–460, 2008). Here, we report on another 11 novel alleles isolated from possum DAB, making this the most diverse marsupial locus described so far. This high level of diversity indicates that DAB is an important MHC locus in the possum and will need to be taken into account in the design of immunocontraceptive vaccines.  相似文献   

15.
16.
Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high‐amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model‐averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC.  相似文献   

17.
Based on a survey of 36 inbred and 8 partially inbred chicken lines and outbred jungle fowl, and with 29 alloantisera generated in different laboratories, 13 7S Ig and 5 IgM allotypes were designated and a new system of nomenclature for chicken Ig polymorphisms was developed. The survey also revealed considerable genetic polymorphism in the structural gene(s) (G-1) responsible for the production of 7S Ig H chains. IgM H chains, encoded by theM-1 locus were less polymorphic. NineG-1 and fourM-1 gene alleles were delineated in highly inbred lines by the formation of unique combinations ofG-1 orM-1 specificities. Five additionalG-1 alleles were found in chicken lines and jungle fowl segregating for allotypes. Thirty-three percent of theG-1M-1 haplotypes theoretically expected, were detected in inbred lines.  相似文献   

18.
The chicken lysozyme gene encodes a hydrolase that has a key role in defence, especially in ovo. This gene was resequenced in global chicken populations [red, grey, Ceylon and green jungle fowl (JF)] and related bird species. Networks, summary statistics and tests of neutrality indicate that although there is extensive variation at the gene, little is present at coding sites, with the exception of one non‐synonymous site. This segregating site and a further fixed non‐synonymous change between red JF and domestic chicken populations are spatially close to the catalytic sites of the enzyme and so might affect its activity.  相似文献   

19.
Genes of the major histocompatibility complex (MHC) are essential in vertebrate adaptive immunity, and they are highly diverse and duplicated in many lineages. While it is widely established that pathogen‐mediated selection maintains MHC diversity through balancing selection, the role of mate choice in shaping MHC diversity is debated. Here, we investigate female mating preferences for MHC class II (MHCII) in the bluethroat (Luscinia svecica), a passerine bird with high levels of extra‐pair paternity and extremely duplicated MHCII. We genotyped family samples with mixed brood paternity and categorized their MHCII alleles according to their functional properties in peptide binding. Our results strongly indicate that females select extra‐pair males in a nonrandom, self‐matching manner that provides offspring with an allelic repertoire size closer to the population mean, as compared to offspring sired by the social male. This is consistent with a compatible genes model for extra‐pair mate choice where the optimal allelic diversity is intermediate, not maximal. This golden mean presumably reflects a trade‐off between maximizing pathogen recognition benefits and minimizing autoimmunity costs. Our study exemplifies how mate choice can reduce the population variance in individual MHC diversity and exert strong stabilizing selection on the trait. It also supports the hypothesis that extra‐pair mating is adaptive through altered genetic constitution in offspring.  相似文献   

20.
The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene ΨDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (ΨDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (ΨDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (ΨDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d N (DQB 1.476, DRB1 1.724, and ΨDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号