首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X Chen  D Min  TA Yasir  YG Hu 《PloS one》2012,7(9):e44510
To ascertain genetic diversity, population structure and linkage disequilibrium (LD) among a representative collection of Chinese winter wheat cultivars and lines, 90 winter wheat accessions were analyzed with 269 SSR markers distributed throughout the wheat genome. A total of 1,358 alleles were detected, with 2 to 10 alleles per locus and a mean genetic richness of 5.05. The average genetic diversity index was 0.60, with values ranging from 0.05 to 0.86. Of the three genomes of wheat, ANOVA revealed that the B genome had the highest genetic diversity (0.63) and the D genome the lowest (0.56); significant differences were observed between these two genomes (P<0.01). The 90 Chinese winter wheat accessions could be divided into three subgroups based on STRUCTURE, UPGMA cluster and principal coordinate analyses. The population structure derived from STRUCTURE clustering was positively correlated to some extent with geographic eco-type. LD analysis revealed that there was a shorter LD decay distance in Chinese winter wheat compared with other wheat germplasm collections. The maximum LD decay distance, estimated by curvilinear regression, was 17.4 cM (r(2)>0.1), with a whole genome LD decay distance of approximately 2.2 cM (r(2)>0.1, P<0.001). Evidence from genetic diversity analyses suggest that wheat germplasm from other countries should be introduced into Chinese winter wheat and distant hybridization should be adopted to create new wheat germplasm with increased genetic diversity. The results of this study should provide valuable information for future association mapping using this Chinese winter wheat collection.  相似文献   

2.
The history of tomato (Solanum lycopersicum L.) improvement includes genetic bottlenecks, wild species introgressions, and divergence into distinct market classes. This history makes tomato an excellent model to investigate the effects of selection on genome variation. A combination of linkage mapping in two F(2) populations and physical mapping with emerging genome sequence data was used to position 434 PCR-based markers including SNPs. Three-hundred-and-forty markers were used to genotype 102 tomato lines representing wild species, landraces, vintage cultivars, and contemporary (fresh market and processing) varieties. Principal component analysis confirmed genetic divergence between market classes of cultivated tomato (P <0.0001). A genome-wide survey indicated that linkage disequilibrium (LD) decays over 6-8 cM when all cultivated tomatoes, including vintage and contemporary, were considered together. Within contemporary processing varieties, LD decayed over 6-14 cM, and decay was over 3-16 cM within fresh market varieties. Significant inter-chromosomal (gametic phase) LD was detected in both fresh market and processing varieties between chromosomes 2 and 3, and 2 and 4, but in distinct chromosomal locations for each market class. Additional LD was detected between chromosomes 3 and 4, 3 and 11, and 4 and 6 in fresh market varieties and chromosomes 3 and 12 in processing varieties. These results suggest that breeding practices for market specialization in tomato have led to a genetic divergence between fresh market and processing types.  相似文献   

3.
Genetic relationships among common wheat varieties from the 10 wheat growing regions of China were assessed using SSR markers. The wheat varieties included 33 modern varieties and 63 landraces selected from the national gene bank collection of China. One hundred and four pairs of selected primers detected a total of 802 alleles, of which 234 were specific to A genome, 309 to B genome, and 221 to D genome. The average genetic richness per locus (A ij /loci) for A, B and D genomes were 6.88, 7.92 and 7.62, respectively. Their average genetic dispersion indices (H t ) were 0.637, 0.694 and 0.656, respectively. The B genome showed the highest genetic diversity among the three wheat genomes. The landraces had a higher genetic diversity than the modern varieties, and the major difference between the landraces and the modern varieties in China existed in the D genome, followed by B and A genomes. The majority of the accessions (65.6%) had heterogeneity at the 112 loci detected. The highest heterogeneity locus percentages were 9.09 and 12.73 in the modern varieties and the landraces, respectively. SSR data were analyzed with NTSYS-pc software. The genetic similarities between accessions were estimated with the DICE coefficient. The accessions clustered into two groups, the modern varieties and the landraces by the un-weighted pair-group method using arithmetic average (UPGMA). The trend of correlation coefficients between genetic similarity matrices based on different numbers of random alleles and that of 802 alleles showed that 550 alleles were sufficient to construct a robust dendrogram. The separated simulations from six sub-samples revealed that 550 alleles were the minimum number required to confidently determine the genetic relationships. It was shown that the number of alleles (loci) needed do not have a strong association with the number of wheat lines in the sample size. These data suggested that 73 loci with good polymorphism are needed to reflect genetic relationships among accessions with more than 90% certainty. In the dendrogram, most accessions from the same wheat region were clustered together, and those from geographically adjacent regions usually appeared in the same small group. This indicated that genetic diversity of Chinese common wheat has a close association with their geographic distribution and ecological environment.  相似文献   

4.
Fluorescence microsatellite markers were employed to reveal genetic diversity of 340 wheat accessions consisting of 229 landraces and 111 modern varieties from the Northwest Spring Wheat Region in China. The 340 accessions were chosen as candidate core collections for wheat germplasm in this region. A core collection representing the genetic diversity of these accessions was identified based on a cluster dendrogram of 78 SSR loci. A total of 967 alleles were detected with a mean of 13.6 alleles (5–32) per locus. Mean PIC was 0.64, ranged from 0.05 to 0.91. All loci were distributed relatively evenly in the A, B and D wheat genomes. Mean genetic richness of A, B and D genomes for both landraces and modern varieties was B > A > D. However, mean genetic diversity indices of landraces changed to B > D > A. As a whole, genetic diversity of the landraces was considerably higher than that of the modern varieties. The big difference of genetic diversity indices in the three genomes suggested that breeding has exerted greater selection pressure in the D than the A or B genomes in this region. Changes of allelic proportions represented in the proposed core collection at different sampling scales suggested that the sampling percentage of the core collection in the Northwest Spring Wheat Region should be greater than 4% of the base collection to ensure that more than 70% of the variation is represented by the core collection. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

5.
Wang L  Ge H  Hao C  Dong Y  Zhang X 《PloS one》2012,7(2):e29432
Chinese wheat mini core collection (262 accessions) was genotyped at 531 microsatellite loci representing a mean marker density of 5.1 cM. One-thousand-kernel weights (TKW) of lines were measured in five trials (three environments in four growing seasons). Structure analysis based on 42 unlinked SSR loci indicated that the materials formed two sub-populations, viz., landraces and modern varieties. A large difference in TKW (7.08 g, P<0.001) was found between the two sub-groups. Therefore, TKW is a major yield component that was improved in the past 6 decades; it increased from a mean 31.5 g in the 1940s to 44.64 g in the 2000s, representing a 2.19 g increase in each decade. Analyses based on a mixed linear model (MLM), population structure (Q) and relative kinship (K) revealed 22 SSR loci that were significantly associated with mean TKW (MTKW) of the five trials estimated by the best linear unbiased predictor (BLUP) method. They were mainly distributed on chromosomes of homoeologous groups 1, 2, 3, 5 and 7. Six loci, cfa2234-3A, gwm156-3B, barc56-5A, gwm234-5B, wmc17-7A and cfa2257-7A individually explained more than 11.84% of the total phenotypic variation. Favored alleles for breeding at the 22 loci were inferred according to their estimated effects on MTKW based on mean difference of varieties grouped by genotypes. Statistical simulation showed that these favored alleles have additive genetic effects. Frequency changes of alleles at loci associated with TKW are much more dramatic than those at neutral loci between the sub-groups. The numbers of favored alleles in modern varieties indicate there is still considerable genetic potential for their use as markers for genome selection of TKW in wheat breeding. Alleles that can be used globally to increase TKW were inferred according to their distribution by latitude and frequency of changes between landraces and the modern varieties.  相似文献   

6.
A set of 41 wheat microsatellite markers (WMS), giving 42 polymorphic loci (two loci on each chromosome), was used to describe genetic diversity in a sample of 559 French bread wheat accessions (landraces and registered varieties) cultivated between 1800 and 2000. A total of 609 alleles were detected. Allele number per locus ranged from 3 to 28, with a mean allele number of 14.5. On the average, about 72% of the total number of alleles were observed with a frequency of less than 5% and were considered to be rare alleles. WMS markers used showed different levels of gene diversity: the highest PIC value occurred in the B genome (0.686) compared to 0.641 and 0.659 for the A and D genomes, respectively. When comparing landraces with registered varieties gathered in seven temporal groups, a cluster analysis based on an F st matrix provided a clear separation of landraces from the seven variety groups, while a shift was observed between varieties registered before and after 1970. There was a decrease of about 25% in allelic richness between landraces and varieties. In contrast, when considering only registered varieties, changes in diversity related to temporal trends appeared more qualitative than quantitative, except at the end of the 1960s, when a bottleneck might have occurred. New varieties appear to be increasingly similar to each other in relation to allelic composition, while differences between landraces are more and more pronounced over time. Finally, considering a sub-sample of 193 varieties representative of breeding material selected during the twentieth century by the six most important plant breeding companies, few differences in diversity were observed between the different breeding programmes. The observed structure of diversity in French bread wheat collections is discussed in terms of consequences, both for plant breeders and for managers of crop genetic resources.Communicated by H.H. Geiger  相似文献   

7.
Detecting quantity trait locus (QTLs) and elite alleles that are associated with grain-filling rate (GFR) in rice is essential for promoting the utilization of hybrid japonica rice and improving rice yield. Ninety-five varieties including 58 landraces and 37 elite varieties from the core germplasm collection were genotyped with 263 simple sequence repeat (SSR) markers. The GFR of the 95 varieties was evaluated at five stages, 7, 14, 21, 28 and 35 days after flowering (DAF) both in 2011 and 2012. We found abundant phenotypic and genetic diversity in the studied population. A population structure analysis identified seven subpopulations. A linkage disequilibrium (LD) analysis indicated that the levels of LD ranged from 60.3 cM to 84.8 cM and artificial selection had enhanced the LD. A time-course association analysis detected 31 marker-GFR associations involving 24 SSR markers located on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 11 and 12 of rice at five stages. The elite alleles for high GFR at each stage were detected. Fifteen excellent parental combinations were predicted, and the best parental combination ‘Nannongjing62401×Laolaihong’ could theoretically increase 4.086 mg grain-1 d-1 at the five stages. Our results demonstrate that the time-course association mapping for GFR in rice could detect elite alleles at different filling stages and that these elite alleles could be used to improve the GFR via pyramiding breeding.  相似文献   

8.
Grain number (GN) is one of three major yield-related components in wheat. We used the Chinese wheat mini core collection to undertake a genome-wide association analysis of grain number using 531 SSR markers randomly located on all 21 chromosomes. Grain numbers of all accessions were measured in four trials, i.e. two environments in four growing seasons. Association analysis based on a mixed linear model (MLM) revealed that 27 SSR loci were significantly associated with mean GN (MGN) estimated by the best linear unbiased predictor (BLUP) method. These included numerous breeder favorable alleles with strong positive effects at 23 loci. Significant or extremely significant differences were detected on MGN between varieties conveying favored allele and varieties with other alleles. Moreover, statistical simulation showed that the favored alleles have additive genetic effects. Although modern varieties combined larger numbers of favored alleles, the numbers of favored alleles were not significantly different from those in landraces, especially those alleles contributing mostly to the phenotypic variation. These results indicate that there is still considerable genetic potential for use of markers for genome selection of GN for high yield in wheat.  相似文献   

9.
西南冬麦区地方品种HMW-GS组成遗传多样性研究   总被引:2,自引:0,他引:2  
采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)对西南冬麦区(云南、贵州、四川)3个省份共计560份小麦地方品种的高分子量谷蛋白亚基(HMW-GS)组成进行了研究。结果表明:Glu-1位点共有22种等位基因,其中Glu-A1位点4种、Glu-B1位点11种、Glu-D1位点7种;亚基null、7 8和2 12在各自位点的频率最高,分别为89.64%、68.21%和96.43%。亚基组成类型共有46种,以null/7 8/2 12和null/7 9/2 12为主,频率分别为50.89%和11.79%。在这些材料中筛选出一些含有1、2*、17 18、14 15、5 10等优质亚基的材料,其中有52份材料含有优质亚基组合。  相似文献   

10.
Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat.   总被引:3,自引:0,他引:3  
Bread wheat and durum wheat were examined for linkage disequilibrium (LD) using microsatellite markers distributed across the genome. The allele database consisted of 189 bread wheat accessions genotyped at 370 loci and 93 durum wheat accessions genotyped at 245 loci. A significance level of p < 0.001 was set for all comparisons. The bread and durum wheat collections showed that 47.9% and 14.0% of all locus pairs were in LD, respectively. LD was more prevalent between loci on the same chromosome compared with loci on independent chromosomes and was highest between adjacent loci. Only a small fraction (bread wheat, 0.9%; durum wheat, 3.2%) of the locus pairs in LD showed R2 values > 0.2. The LD between adjacent locus pairs extended (R2 > 0.2) approximately 2-3 cM, on average, but some regions of the bread and durum wheat genomes showed high levels of LD (R2 = 0.7 and 1.0, respectively) extending 41.2 and 25.5 cM, respectively. The wheat collections were clustered by similarity into subpopulations using unlinked microsatellite data and the software Structure. Analysis within subpopulations showed 14- to 16-fold fewer locus pairs in LD, higher R2 values for those pairs in LD, and LD extending further along the chromosome. The data suggest that LD mapping of wheat can be performed with simple sequence repeats to a resolution of <5 cM.  相似文献   

11.
A highly polymorphic core collection of bread wheat and a more narrow-based breeding material, gathered from pedigrees of seven modern cultivars, was analysed in order to compare genetic diversity indices and linkage disequilibrium (LD) patterns along the chromosome 3B with microsatellite (SSR) and Diversity Arrays Technology markers. Five ancestral gene pools could be identified within the core collection, indicating a strong geographical structure (Northwest Europe, Southeast Europe, CIMMYT–ICARDA group, Asia, Nepal). The breeding material showed a temporal structure, corresponding to different periods of breeding programmes [old varieties (from old landraces to 1919), semi-modern varieties (1920–1959), modern varieties (1960–2006)]. Basic statistics showed a higher genetic diversity in the core collection than in the breeding material, indicating a stronger selection pressure in this latter material. More generally, the chromosome 3B had a lower diversity than the whole B-genome. LD was weak in all studied materials. Amongst geographical groups, the CIMMYT–ICARDA pool presented the longest ranged LD in contrast to Asian accessions. In the breeding material, LD increased from old cultivars to modern varieties. Genitors of seven modern cultivars were found to be different; most marker pairs in significant LD were observed amongst genitors of Alexandre and Koreli varieties, indicating an important inbreeding effect. At low genetic distances (0–5 cM), the breeding material had higher LD than the core collection, but globally the two materials had similar values in all classes. Marker pairs in significant LD are generally observed around the centromere in both arms and at distal position on the short arm of the chromosome 3B.  相似文献   

12.
Genetic diversity among 42 sorghum accessions representing landraces (19), advanced breeding lines (16), local cultivars (2) and release varieties (5) with 30 simple sequence repeat (SSR) markers revealed 7.6 mean number of alleles per locus showing 93.3% polymorphism and an average polymorphism information content of 0.78 which range from 0.22 (Xtxp12) and 0.91(Xtxp321). The average heterozygosity and effective number of alleles per locus were 0.8 and 6.65 respectively. Cluster analysis based on microsatellite allelic diversity clearly demarcated the accessions into ten clusters. A total of 24 unique alleles were obtained from seven SSR loci in 23 accessions in a size range of 110–380 bp; these unique alleles may serve as diagnostic tools for particular region of the genome of respective genotypes. Selected SSR markers from different linkage groups provided an accurate way of determining genetic diversity at the molecular level.  相似文献   

13.
Xu P  Wu X  Wang B  Luo J  Liu Y  Ehlers JD  Close TJ  Roberts PA  Lu Z  Wang S  Li G 《Heredity》2012,109(1):34-40
Association mapping of important traits of crop plants relies on first understanding the extent and patterns of linkage disequilibrium (LD) in the particular germplasm being investigated. We characterize here the genetic diversity, population structure and genome wide LD patterns in a set of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm from China. A diverse collection of 99 asparagus bean and normal cowpea accessions were genotyped with 1127 expressed sequence tag-derived single nucleotide polymorphism markers (SNPs). The proportion of polymorphic SNPs across the collection was relatively low (39%), with an average number of SNPs per locus of 1.33. Bayesian population structure analysis indicated two subdivisions within the collection sampled that generally represented the 'standard vegetable' type (subgroup SV) and the 'non-standard vegetable' type (subgroup NSV), respectively. Level of LD (r(2)) was higher and extent of LD persisted longer in subgroup SV than in subgroup NSV, whereas LD decayed rapidly (0-2 cM) in both subgroups. LD decay distance varied among chromosomes, with the longest (≈ 5 cM) five times longer than the shortest (≈ 1 cM). Partitioning of LD variance into within- and between-subgroup components coupled with comparative LD decay analysis suggested that linkage group 5, 7 and 10 may have undergone the most intensive epistatic selection toward traits favorable for vegetable use. This work provides a first population genetic insight into domestication history of asparagus bean and demonstrates the feasibility of mapping complex traits by genome wide association study in asparagus bean using a currently available cowpea SNPs marker platform.  相似文献   

14.
We constructed a genetic linkage map based on a cross between two Swiss winter wheat (Triticum aestivum L.) varieties, Arina and Forno. Two-hundred and forty F5 single-seed descent (SSD)-derived lines were analysed with 112 restriction fragment length polymorphism (RFLP) anonymous probes, 18 wheat cDNA clones coding for putative stress or defence-related proteins and 179 simple-sequence repeat (SSR) primer-pairs. The 309 markers revealed 396 segregating loci. Linkage analysis defined 27 linkage groups that could all be assigned to chromosomes or chromosome arms. The resulting genetic map comprises 380 loci and spans 3,086 cM with 1,131 cM for the A genome, 920 cM for the B genome and 1,036 cM for the D genome. Seventeen percent of the loci showed a significant (P < 0.05) deviation from a 1:1 ratio, most of them in favour of the Arina alleles. This map enabled the mapping of QTLs for resistance against several fungal diseases such as Stagonospora glume blotch, leaf rust and Fusarium head blight. It will also be very useful for wheat genetic mapping, as it combines RFLP and SSR markers that were previously located on separate maps. S. Paillard and T. Schnurbusch contributed equally to the work  相似文献   

15.
Genetic diversity at Gli-1, Gli-2 and Glu-1 loci was investigated in 89 Sichuan wheat ( Triticum aestivum L.) landraces by using acid polyacrylamide gel electrophoresis (APAGE) and SDS-PAGE. In these landraces, a total of 32 gliadin and 3 high-molecular-weight (HMW) glutenin patterns were observed. In total, 14, 15 and 5 alleles were identified at Gli-1, Gli-2 and Glu-1, respectively. At each locus, the alleles in higher frequency were Gli-A1a (89%), Gli-B1 h (46%), Gli-D1a (65%), Gli-A2a (64%), Gli-B2j (45%), Gli-D2 a (48%), Glu-A1c (99%), Glu-B1b (99%) and Glu-D1a (100%). The Nei's genetic variation index (H) of Sichuan wheat landraces was 0.3706, varying from 0 to 0.7087. The highest genetic diversity was found at Gli-B2 locus, while the lowest was found at Glu-D1 . The genetic diversity at Gli loci was higher than that of Glu-1 loci among these landraces, but it was much lower than that of modern wheat cultivars. These results indicated a narrow genetic base of Sichuan wheat landraces. In this study, “Chengdu-guangtou” had the identical gliadin and HMW-glutenin patterns with “Chinese Spring”, further supporting the proposal that “Chinese Spring” is a strain of “Chengdu-guangtou”.  相似文献   

16.
吴迪  郑彤  李磊  李韬 《生物技术进展》2020,10(3):242-250
赤霉病是小麦主要的流行病害之一。借助标记辅助选择将不同数量性状基因座(quantitative trait loci,QTL)聚合是防治赤霉病有效且环保的方法,可以从源头上控制赤霉病并降低籽粒中毒素含量。抗赤霉病QTL在小麦全基因组均有分布,但除了Fhb1、Fhb2等少数位点有比较可靠的鉴别标记,绝大部分位点缺乏有效的位点特异性鉴别标记。简单重复序列(simple sequence repeat,SSR)标记多态性丰富,可以区分自然群体中不同等位变异,方便用于标记辅助育种。基于此,搜集了不同文献中报道的与赤霉病关联的SSR标记386个,并用这些标记构建全基因组赤霉病抗性QTL一致性图谱,接着对这些关联标记进行拷贝数分析,进而选择位点内的单拷贝SSR标记,将这些单拷贝标记在156个品种组成的自然群体中进行扩增,并与三季大田和三季温室环境下赤霉病抗性进行关联,筛选与赤霉病抗性关联的单拷贝SSR标记,明确这些标记在自然群体中的有效等位变异和效应。结果表明,共8个单拷贝SSR标记至少在两季试验中与表型显著关联(P<0.05),涉及2B、2D、3B、5A、5B、6A、6D、7A染色体,有5个单拷贝标记位点存在有效等位变异。中国地方品种和日本品种携带更多的有利变异,且有利等位变异数目越多的品种赤霉病抗性越好。研究分析的QTL位点及其关联的单拷贝SSR标记可用于赤霉病抗病育种,有利于提高品种赤霉病抗性水平和育种效率。  相似文献   

17.
A scan for linkage disequilibrium across the human genome.   总被引:17,自引:0,他引:17  
  相似文献   

18.
Peanut is an important and nutritious agricultural commodity and a livelihood of many small-holder farmers in the semi-arid tropics (SAT) of world which are facing serious production threats. Integration of genomics tools with on-going genetic improvement approaches is expected to facilitate accelerated development of improved cultivars. Therefore, high-resolution genotyping and multiple season phenotyping data for 50 important agronomic, disease and quality traits were generated on the ‘reference set’ of peanut. This study reports comprehensive analyses of allelic diversity, population structure, linkage disequilibrium (LD) decay and marker-trait association (MTA) in peanut. Distinctness of all the genotypes can be established by using either an unique allele detected by a single SSR or a combination of unique alleles by two or more than two SSR markers. As expected, DArT features (2.0 alleles/locus, 0.125 PIC) showed lower allele frequency and polymorphic information content (PIC) than SSRs (22.21 alleles /locus, 0.715 PIC). Both marker types clearly differentiated the genotypes of diploids from tetraploids. Multi-allelic SSRs identified three sub-groups (K = 3) while the LD simulation trend line based on squared-allele frequency correlations (r2) predicted LD decay of 15–20 cM in peanut genome. Detailed analysis identified a total of 524 highly significant MTAs (pvalue >2.1×10–6) with wide phenotypic variance (PV) range (5.81–90.09%) for 36 traits. These MTAs after validation may be deployed in improving biotic resistance, oil/ seed/ nutritional quality, drought tolerance related traits, and yield/ yield components.  相似文献   

19.
The objective of the current work was to analyse the variability of high and low molecular mass (HMM and LMM) glutenin subunits, along with some morphological characteristics in sixty Spanish accessions of rivet wheat (Triticum turgidum L. ssp. turgidum). The lines were grouped in sixteen botanical varieties and five additional types, according the morphological criteria. Up to 13 allelic variants (four alleles for the Glu-A1 locus and nine alleles for the Glu-B1 locus) and 34 B-LMMGs patterns were found in the evaluated lines. The current data indicated a clear reduction of morphological variability, along with an asymmetric distribution of the alleles and patterns for seed storage proteins. This polymorphism could be useful for enlarging the genetic background of modern durum wheat.  相似文献   

20.
我国西南地区玉米地方品种遗传多样性的SSR分子标记分析   总被引:1,自引:0,他引:1  
利用微卫星(SSR)标记技术和DNA混合取样方法,选取均匀覆盖玉米染色体组的42对SSR引物,检测了来自我国西南地区54个玉米地方品种的遗传多样性。在54个玉米地方品种中检测到256个等位基因,每个SSR标记的等位基因数为2~9个,平均6.1个,说明我国西南地区玉米地方品种遗传多样性丰富。根据遗传相似系数矩阵做出的树状图,将54个玉米地方品种大致划分成4类,来源于同一地区的多数玉米地方品种划分在同一类中,表明西南地区玉米地方品种的地理分布与其遗传背景存在内在联系。从54个玉米地方品种中选出11个,每个品种选取15个单株,共165个DNA单株样品,分析玉米地方品种的遗传结构及其品种内的遗传多样性。对于检测玉米地方品种的遗传多样性,DNA单株样品分析优于DNA混合样品分析,42对相同的SSR引物在11个玉米地方品种中检测到330个等位基因,平均等位基因数A=7.86,有效等位基因数Ae=3.90,平均期望杂合度He=0.69,实际观察杂合度H0=0.37。据遗传结构分析结果,固定指数(F)为0.25~0.79,表明玉米地方品种是典型的混合繁育系统;由于杂合体不足,玉米地方品种群体间及群体内的遗传结构均偏离了Hardy-Weinberg平衡;杂合性基因多样度比率(Fst)平均为0.07,表明品种间和品种内的遗传变异分别占总遗传变异的7%和93%。玉米地方品种内遗传多样性及品种间遗传距离分析结果表明,在我国西南地区,分布在四川的玉米地方品种具有最丰富的遗传变异。经综合分析推测,我国西南地区玉米地方品种最早引进到四川种植,由此向毗邻地区传播扩散。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号