首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A series of 2,4-disubstituted thiazole derivatives were designed and synthesized as new Bcr/Abl inhibitors by hybriding the structural moieties from FDA approved imatinib, nilotinib and dasatinib. The new inhibitors strongly suppressed the activity of Bcr/Abl kinase and potently inhibited the proliferation of K562 and KU812 leukemia cancer cells. Compound 4i displayed comparable potency with that of nilotinib in both biochemical kinase assay and cancer cell growth inhibition assay. These inhibitors might serve as lead compounds for further developing new anticancer drugs.  相似文献   

2.
Monoacylglycerol lipase (MAGL) has an essential role in the catabolic pathway of the endocannabinoid 2-arachidonoylglycerol, which makes it a potential target for highly specific inhibitors for the treatment of a number of diseases. We designed and synthesized a series of carbamate analogues of URB602. We evaluated their inhibitory activity toward human MAGL in vitro both in cell culture and lysates. The target compounds exhibited moderate to excellent inhibitory activity against MAGL. The most promising compound 2b showed good inhibitory activity with IC50 value of 4.5?±?0.70?μM reducing MAGL activity to 82% of controls at 10?μM compared to 66% for the parent compound URB602. Interestingly, compounds 2b and 2c induce cell death through the inhibition of MAGL. Molecular modelling approaches and docking studies, used to investigate inhibitory profiles, indicated that trifluoromethyl substitutions of the aryl group and the benzene ring present at the oxygen side of the carbamate molecule had a significant impact on the activity.  相似文献   

3.
As a drug used to treat imatinib-resistant and -intolerant, chronic and advanced phase chronic myelogenous leukaemia, nilotinib is well characterised as a potent inhibitor of the Abl tyrosine kinase activity of wild-type and imatinib-resistant mutant forms of BCR-Abl. Here we review the profile of nilotinib as a protein kinase inhibitor. Although an ATP-competitive inhibitor of Abl, nilotinib binds to a catalytically inactive conformation (DFG-out) of the activation loop. As a consequence of this, nilotinib exhibits time-dependent inhibition of Abl kinase in enzymatic assays, which can be extrapolated to other targets to explain differences between biochemical activity and cellular assays. Although these differences confound assessment of kinase selectivity, as assessed using a combination of protein binding and transphosphorylation assays, together with cellular autophosporylation and proliferation assays, well established kinase targets of nilotinib in rank order of inhibitory potency are DDR-1 > DDR-2 > BCR-Abl (Abl) > PDGFRα/β > KIT > CSF-1R. In addition nilotinib has now been found to bind to both MAPK11 (p38β) and MAPK12 (p38α), as well as with very high affinity to ZAK kinase. Although neither enzymatic nor cellular data are yet available to substantiate the drug as an inhibitor of ZAK phosphorylation, modeling predicts that it binds in an ATP-competitive fashion.  相似文献   

4.
VEGFR, ERK and Abl had been respectively identified as good drug targets, and their crosstalk also had been well elaborated. Multitarget drugs were more advantageous for cancer treatment, however, no inhibitors simultaneously acting on the three proteins were developed due to their structural diversities. Herein, N-(4-((2-(2-(naphthaen-1-yl)acetamido)ethyl)carbamoyl)piperidin-4-yl)-6-(trifluoromethyl)nicotinamide (NEPT, 6a) was discovered as an active scaffold against VEGFR-2, ERK-2 and Abl-1 kinases through the combination of support vector machine, similarity searching and molecular docking. NEPT and its derivatives were synthesized by convenient routine, their in vitro anti-proliferative abilities against human liver cancer cell line HepG2 were preliminarily evaluated. A representative compound 6b showed an IC50 value of 11.3 μM and induced significant HepG2 cells apoptosis. Besides, these compounds displayed better anti-proliferative abilities against K562 cells (a cell line with typical hyperactivity of the above multikinases), for example compound 6b exhibited an IC50 value of 4.5 μM. Based on hepatotoxicity case reports of Abl inhibitors, cytotoxicity of synthetic compounds against normal liver cell lines (QSG7701 and HL7702) was studied, 6b had a similar toxic effect with positive control imatinib, and most compounds showed less than 35% inhibition activities at 100 μM. Molecular docking study disclosed interactions of 6b with VEGFR-2, ERK-2 and Abl-1 kinases, respectively. Our data suggested the biological activities of 6b may derived from collaborative effects of VEGFR-2, ERK-2 and Abl-1 inhibition.  相似文献   

5.
The present work describes the preparation of a novel series of compounds based on the structure of goniothalamin (1), a natural styryl lactone with known cytotoxic and antiproliferative activities against a variety of cancer cell lines. A focused library of 17 goniothalamin analogues displaying the 5-methyl-2,5-dihydrofuran-2-one motif were prepared, and their cytotoxicity evaluated. While the analogues bearing methoxy and/or hydroxy groups on the aromatic moiety usually were at least three times less potent than the lead compound (1), ortho and para-trifluoromethyl analogues 10 and 11 exhibited levels of cytotoxicity similar to goniothalamin (1) against most cancer cell lines evaluated. One could suggest that the electronic effect of the trifluoromethyl group activates the inhibitor’s electrophilic site via reduction of the electron density of the α,β-unsaturated ester oxygen atom. These results provide new information on the structure activity relationship of these α,β-unsaturated styryl lactones, thereby further focusing the design of novel candidates.  相似文献   

6.
Analogues of mitoQ and idebenone were synthesized to define the structural elements that support oxygen consumption in the mitochondrial respiratory chain. Eight analogues were prepared and fully characterized, then evaluated for their ability to support oxygen consumption in the mitochondrial respiratory chain. While oxygen consumption was strongly inhibited by mitoQ analogues 2–4 in a chain length-dependent manner, modification of idebenone by replacement of the quinone methoxy groups by methyl groups (analogues 68) reduced, but did not eliminate, oxygen consumption. Idebenone analogues 68 also displayed significant cytoprotective properties toward cultured mammalian cells in which glutathione had been depleted by treatment with diethyl maleate.  相似文献   

7.
The discovery of a 2-aryl-3-aroyl indole-based small-molecule inhibitor of tubulin assembly (referred to as OXi8006) inspired the design, synthesis, and biological evaluation of a series of diversely functionalized analogues. In the majority of examples, the pendant 2-aryl ring contained a 3-hydroxy-4-methoxy substitution pattern, and the fused aryl ring featured a 6-methoxy group. Most of the variability was in the 3-aroyl moiety, which was modified to incorporate methoxy (3336), nitro (2527), halogen (2829), trifluoromethyl (30), or trifluoromethoxy (3132) functionalities. In two analogues (34 and 36), the methoxy substitution pattern in the fused aryl ring varied, while in another derivative (35) the phenolic moiety was translocated from the pendant 2-aryl ring to position-7 of the fused aryl ring. Each of the compounds were evaluated for their cytotoxicity (in vitro) against the SK-OV-3 (ovarian), NCI-H460 (lung), and DU-145 (prostate) human cancer cell lines and for their ability to inhibit tubulin assembly. Four of the compounds (30, 31, 35, 36) proved to be potent inhibitors of tubulin assembly (IC50 <5 μM), and three of these compounds (31, 35, 36) were strongly cytotoxic against the three cancer cell lines. The most active compound (36) in this series, which incorporated a methoxy group at position-7, was comparable in terms of inhibition of tubulin assembly and cytotoxicity to the lead compound OXi8006.  相似文献   

8.
Bcr–Abl plays an essential role in the pathogenesis and development of chronic myeloid leukaemia (CML). Inhibition of Bcr–Abl has great potential for therapeutic intervention in CML. In order to obtain novel and potent Bcr–Abl inhibitors, twenty seven 4,6-disubstituted pyrimidines were synthesized and evaluated herein. The biological results indicated that four compounds of them (C4, C5, C16, and C23) were potent Bcr–Abl inhibitors which were comparable to positive control. Moreover, C4 and C5 displayed promising antiproliferative activity against K562 cells. The results suggested that these 4,6-disubstituted pyrimidines could serve as promising leads for further optimization of Bcr–Abl inhibitors.  相似文献   

9.
Herein, the design and synthesis of 10 novel N′-arylidene pyrazole-3-carbohydrazides are described. Compounds were pretended to act as dual agents against diabetes and oxidative stress, two correlated pathologies involved in metabolic syndrome development and progression. The antioxidant capacity was evaluated by means of DPPH and FRAP in vitro assays. It was found that compounds bearing a hydroxyl group at 4-position of the hydrazone moiety are potent antioxidant entities, being compound 3g (a syringaldehyde derivative) the most active compound. In addition, the in vivo hypoglycemic effect of the analogues was determined. With regard to the above, the cinnamaldehyde derivatives showed a scarce biological activity, while the 4-hydroxy analogues showed the higher glycemia reduction at 7 h after administration. Interestingly, the most potent antioxidants 3b and 3g also were of the most active compounds in reducing the plasma glucose, reaching 80% of reduction in the case of 3g. Molecular docking binding poses conducted to a plausible interpretation of the biological outcomes and a possible interaction between a hydroxy group and Asn287 of CB1R was proposed as an important feature for enhancing the observed activity.  相似文献   

10.
A novel class of Nilotinib derivatives, B1B20, were synthesized in high yields using various substituted anilines. All the title compounds were evaluated for their inhibitory activities against Bcr–Abl and antiproliferative effects on human leukemia cell (K562). The pharmacological results indicated that some compounds exhibited promising anticancer activity. In particular, compound B14 containing tertiary amine side chain exhibited Bcr–Abl inhibitory activity similar to that of Nilotinib. It was suggested that the introduction of the tertiary amine moiety could improve Bcr–Abl inhibitory activity and antitumor effects.  相似文献   

11.
Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure–activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3–2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5 μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells.  相似文献   

12.
We previously designed and synthesized a series of cyclopropane-based conformationally restricted analogues of γ-aminobutyric acid (GABA). The study demonstrated that the critical conformation of the analogues that selectively active to betaine/GABA transporter 1 (BGT1) subtype is the trans-syn-form, in which the amino and carboxyl groups are in trans-configuration and the cyclopropane ring and the carboxyl group are in syn-arrangement. In this study, we designed and synthesized cyclopropane-based GABA analogues, which were conformationally restricted in the trans-syn-form by cyclopropylic strain based on the stereochemistry of the carbon adjacent to cyclopropane. Their conformation was confirmed as the syn-form by calculations and NMR studies, and their pharmacological evaluation clarified that compounds 11a and 11d had the BGT1 selectivity, although their inhibitory effects were insufficient.  相似文献   

13.
A general method for the synthesis of substituted (1E,4E,6E)-1,7-diphenylhepta-1,4,6-trien-3-ones, based on the aldol condensations of substituted 4-phenylbut-3-en-2-ones and substituted 3-phenylacrylaldehydes, was achieved. The natural trienones 4 and 5 have been synthesized by this method, together with the trienone analogues 920. These analogues were evaluated for their cytotoxic activity against human oral cancer KB cell line. The structure–activity relationship study has indicated that the analogues with the 1,4,6-trien-3-one function are more potent than the curcuminoid-type function. Analogues with meta-oxygen function on the aromatic rings are more potent than those in the ortho- and para-positions. Free phenolic hydroxy group is more potent than the corresponding methyl ether analogues. Among the potent trienones, compounds 11, 18 and 20 were more active than the anticancer drug ellipticine. All compounds were also evaluated against the non-cancerous Vero cells and it was found that compounds 11, 12 and 17 were much less toxic than curcumin (1); they showed high selectivity indices of 35.46, 33.46 and 31.68, respectively. These analogues are regarded as the potent trienones for anti-oral cancer study.  相似文献   

14.
A series of trifluoromethylated hexahydropyrimidine and tetrahydropyrimidine derivatives were synthesized and their in vitro cytotoxic activities were determined in colon cancer cell line (COLO 320 HSR). Compounds 4f, 4g, 4k, 5, and 7 proved to be the most active in this series of compounds. They represent promising new leads for the development of highly potent and selective anticancer compounds. All the compounds are lipophilic due to the trifluoromethyl group, and are thus expected to penetrate the membrane in appreciable concentration.  相似文献   

15.
Bcr‐Abl is an oncogenic fusion protein which expression enhances tumorigenesis, and has been highly associated with chronic myeloid leukemia (CML). Acquired drug resistance in mutant Bcr‐Abl has enhanced pathogenesis with the use of single therapy agents such as nilotinib. Moreover, allosteric targeting has been identified to consequentially inhibit Bcr‐Abl activity, which led to the recent development of ABL‐001 (asciminib) that selectively binds the myristoyl pocket. Experimental studies have revealed that the combination of nilotinib and ABL‐001 induced a ‘bent’ conformation in the C‐terminal helix of Bcr‐Abl; a benchmark of inhibition, thereby exhibiting a greater potency in the treatment of CML, surmounting the setbacks of drug resistance, disease regression and relapse. Therefore, we report the first account of the dynamics and conformational analysis of oncogenic T334I Bcr‐Abl by dual targeting. Our findings revealed that unlike in the Bcr‐Abl‐Nilotinib complex, dual targeting by both inhibitors induced the bent conformation in the C‐terminal helix that varied with time. This was coupled with significant alteration in Bcr‐Abl stability, flexibility, and compactness and an overall structural re‐orientation inwards towards the hydrophobic core, which reduced the solvent‐exposed residues indicative of protein folding. This study will facilitate allosteric targeting and the design of more potent allosteric inhibitors for resistive target proteins in cancer.  相似文献   

16.
Hepatitis B, a viral infectious disease caused by hepatitis B virus (HBV), is a life-threatening disease that leads liver cirrhosis and liver cancer. Because the current treatments for HBV, such as an interferon (IFN) formulation or nucleoside/nucleotide analogues, are not sufficient, the development of a more effective agent for HBV is urgent required.CDM-3008 (1, 2-(2,4-bis(trifluoromethyl)imidazo[1,2-a][1,8]naphthyridin-8-yl)-1,3,4-oxadiazole) (RO8191)) is a small molecule with an imidazo[1,2-a][1,8]naphthyridine scaffold that shows anti-HCV activity with an IFN-like effect. Here, we report that 1 was also effective for HBV, although the solubility and metabolic stability were insufficient for clinical use. Through the structure-activity relationship (SAR), we discovered that CDM-3032 (11, N-(piperidine-4-yl)-2,4-bis(trifluoromethyl)imidazo[1,2-a][1,8]naphthyridine-8-carboxamide hydrochloride) was more soluble than 1 (>30?mg/mL for 11 versus 0.92?mg/mL for 1). In addition, the half-life period of 11 was dramatically improved in both mouse and human hepatic microsomes (T1/2, >120?min versus 58.2?min in mouse, and >120?min versus 34.1?min in human, for 11 and 1, respectively).  相似文献   

17.
A series of loratadine analogues containing hydroxyl group and chiral center were synthesized. The effect of the synthesized compounds on the histamine-induced contractions of guinea-pig ileum muscles was studied. In addition, the in vivo asthma-relieving effect of the analogues in the histamine induced asthmatic reaction in guinea-pigs was determined. Most of the compounds exhibited definite H1 antihistamine activity. The S-enantiomers, compounds 2, 4 and 8, are more potent than the R-enantiomers, compounds 1, 3 and 7. Compound 6 was the most active one among the eight synthesized compounds.  相似文献   

18.
The ATP-competitive inhibitors dasatinib and nilotinib, which bind to catalytically different conformations of the Abl kinase domain, have recently been approved for the treatment of imatinib-resistant CML. These two new drugs, albeit very efficient against most of the imatinib-resistant mutants of Bcr–Abl, fail to effectively suppress the Bcr–Abl activity of the T315I (or gatekeeper) mutation. Generating new ATP site-binding drugs that target the T315I in Abl has been hampered, amongst others, by target selectivity, which is frequently an issue when developing ATP-competitive inhibitors. Recently, using an unbiased cellular screening approach, GNF-2, a non-ATP-competitive inhibitor, has been identified that demonstrates cellular activity against Bcr–Abl transformed cells. The exquisite selectivity of GNF-2 is due to the finding that it targets the myristate binding site located near the C-terminus of the Abl kinase domain, as demonstrated by genetic approaches, solution NMR and X-ray crystallography. GNF-2, like myristate, is able to induce and/or stabilize the clamped inactive conformation of Abl analogous to the SH2-Y527 interaction of Src. The molecular mechanism for allosteric inhibition by the GNF-2 inhibitor class, and the combined effects with ATP-competitive inhibitors such as nilotinib and imatinib on wild-type Abl and imatinib-resistant mutants, in particular the T315I gatekeeper mutant, are reviewed.  相似文献   

19.
The biological evaluation of a natural sesquiterpene dimer meiogynin A 1, is described as well as that of five non-natural analogues. Although active on a micromolar range on the inhibition of Bcl-xL/Bak and Mcl-1/Bid interaction, meiogynin A 1 is not cytotoxic on three cell lines that overexpress Bcl-xL and Mcl-1. Contrarily, one of its analogues 6 with an inverted configuration on the side chain and an aromatic moiety replacing the cyclohexane ring was active on both target proteins, cytotoxic on a micromolar range and was found to induce apoptosis through a classical pathway.  相似文献   

20.
Xanthenone based hydrazone derivatives (5a–n) have been synthesized as potential α-glucosidase inhibitors. All synthesized compounds (5a–n) are characterized by their FTIR, 1H NMR, 13C NMR and HRMS, and in case of 5g also by X-ray crystallographic technique. The compounds unveiled a varying degree of α-glucosidase inhibitory activity when compared with standard acarbose (IC50 = 375.38 ± 0.12 µM). Amongst the series, compound 5l (IC50 = 62.25 ± 0.11 µM) bearing a trifluoromethyl phenyl group is found to be the most active compound. Molecular modelling is performed to establish the binding pattern of the more active compound 5l, which revealed the significance of substitution pattern. The pharmacological properties of molecules are also calculated by MedChem Designer which determines the ADME (absorption, distribution, metabolism, excretion) properties of molecules. The solid state self-assembly of compound 5g is discussed to show the conformation and role of iminoamide moiety in the molecular packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号