首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In hymenopteran parasitoids devoid of symbiotic viruses, venom proteins appear to play a major role in host immune suppression and host regulation. Not much is known about the active components of venom proteins in these parasitoids, especially those that have the functions involved in the suppression of host cellular immunity. Here, we report the isolation and characterization of a venom protein Vn.11 with 24.1 kDa in size from Pteromalus puparum, a pupa-specific endoparasitoid of Pieris rapae. The Vn.11 venom protein is isolated with the combination of ammonium sulfate precipitation and anion exchange chromatography, and its purity is verified using SDS-PAGE analysis. Like crude venom, the Vn.11 venom protein significantly inhibits the spreading behavior and encapsulation ability of host hemocytes in vitro. It is suggested that this protein is an actual component of P. puparum crude venom as host cellular-immune suppressive factor.  相似文献   

3.
Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we report on a newly discovered immune-disabling mechanism in the Pieris rapae/Pteromalus puparum host/parasitoid system. Because venom injections and parasitization suppresses host phagocytosis, we turned attention to the P. rapae scavenger receptor (Pr-SR), posing the hypothesis that P. puparum venom suppresses expression of the host Pr-SR gene. To test our hypothesis, we cloned a full-length cDNA of the Pr-SR. Multiple sequences alignment showed the deduced amino acid sequence of Pr-SR is similar to scavenger receptors of other lepidopterans. Bacterial and bead injections induced Pr-SR mRNA and protein expression, which peaked at 4 h post-bead injection. Venom injection inhibited Pr-SR expression. Pr-SR was specifically expressed in granulocytes compared to plasmatocytes. We localized the Pr-SR protein in cytoplasm and cellular membrane, with no evidence of secretion into host plasma. Double-strand RNA designed to Pr-SR mRNA silenced expression of Pr-SR and significantly impaired host phagocytosis and encapsulation reactions. Venom injections similarly silenced Pr-SR expression during the first 8 h post-treatment, after which the silencing effects gradually abated. We infer from these findings that one mechanism of impairing P. rapae hemocytic immune reactions is by silencing expression of Pr-SR.  相似文献   

4.
Pteromalus puparum is a predominant endoparasitoid wasp of Pieris rapae. Its venom is the only active factor injected into host associated with oviposition. In this report, we explored whether the venom alone from this wasp affects the endocrine system of its host or not. We monitored the changes of hemolymph juvenile hormone (JH; only JH III detected), ecdysteroid, and juvenile hormone esterase activity (JHE) over 72 h in parasitized and venom‐microinjected P. rapae pupae. Non‐parasitized and PBS‐microinjected P. rapae served as controls. Results showed that JH titers were significantly higher in parasitized and venom‐microinjected pupae than that in control pupae during 24 to 72 h. After 12 h, JH titers were significantly promoted by parasitization and venom microinjection. JHE activities of non‐parasitized and PBS‐microinjected pupae were significantly higher than that of parasitized and venom‐microinjected pupae, which was with a peak at 12 h (parasitized pupae) or 24 h (venom‐microinjected pupae) during 6 to 48 and 12 to 36 h, respectively. The hemolymph titers of ecdysteroid in non‐parasitized and PBS‐microinjected pupae increased rapidly during 12 to 36 h with a peak at 36 h, and were higher than treatments before 48 h, while presenting a significant difference at 24 to 48 h between the treatments and controls. The results demonstrate that venom alone of this parasitoid wasp can disrupt its host's endocrine system. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Abstract Parasitism by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae) by using only its associated venom, can suppress the immunal responses of Pieris rapae (Lepidoptera: Pieridae). However, up to now, current knowledge of the mechanisms has been limited. The response of host hemocytes to parasitism was investigated using a combination of light and transmission electron microscopy (TEM). Five hemocyte types, prohemocytes (PRs), granulocytes (GRs), plasmatocytes (PLs), oenocytoids (OEs) and coagulocytes (COs), were observed and characterized from both unparasitized and parasitized Pieris rapae pupae. Light microscopy showed that both GRs and PLs became more round and spread abnormally after parasitism, whereas the shape of other types of hemocytes remained unaffected. In addition, the size of PRs and PLs became larger while OEs became smaller. The proportion of PRs significantly increased after parasitism and that of PLs decreased by 43.9%, but there was no significant increase of GRs and OEs. TEM showed that all types of hemocytes except COs were damaged to various degrees after parasitism, especially resulting in electron opaque cytoplasm and nucleus, fewer cell organelles of rough endoplasmic reticulum, mitochondria and vesicles. Our results indicate that parasitism by P. puparum affects differential hemocyte counts and structures of host hemocytes, particularly for GRs and PLs, which may be the main cause of the parasitoid suppressing host cellular immune responses.  相似文献   

6.
Biogenic amines (BAs), such as octopamine, tyramine, dopamine, serotonin, and acetylcholine regulate various behaviors and physiological functions in insects. Here, we identified seven genes encoding BA biosynthetic enzymes and 16 genes encoding BA G protein-coupled receptors in the genome of the endoparasitoid wasp, Pteromalus puparum. We compared the genes with their orthologs in its host Pieris rapae and the related ectoparasitic wasp Nasonia vitripennis. All the genes show high (>90%) identity to orthologs in N. vitripennis. P. puparum and N. vitripennis have the smallest number of BA receptor genes among the insect species we investigated. We then analyzed the expression profiles of the genes, finding those acting in BA biosynthesis were highly expressed in adults and larvae and those encoding BA receptors are highly expressed in adults than immatures. Octα1R and 5-HT7 genes were highly expressed in salivary glands, and a high messenger RNA level of 5-HT1A was found in venom apparatuses. We infer that BA signaling is a fundamental component of the organismal organization, homeostasis and operation in parasitoids, some of the smallest insects.  相似文献   

7.
8.
The venom gland is a conserved organ in Hymenoptera that shows adaptations associated with life-style diversification. Few studies have investigated venom components and function in the highly diverse parasitic wasps and all suggest that the venom regulates host physiology. We explored the venom of the endoparasitoid Hyposoter didymator (Campopleginae), a species with an associated polydnavirus produced in the ovarian tissue. We investigated the effects of the H. didymator venom on two physiological traits of the host Spodoptera frugiperda (Noctuidae): encapsulation response and growth rate. We found that H. didymator venom had no significant effect on host cellular immunity or development, suggesting that it does not contribute to parasitism success. The host physiology seemed to be modified essentially by the ovarian fluid containing the symbiotic polydnaviruses. Proteomic analyses indicated that the H. didymator venom gland produces a large variety of proteins, consistent with the classical hymenopteran venom protein signature, including: reprolysin-like, dipeptidyl peptidase IV, hyaluronidase, arginine kinase or allergen proteins. The venom extracts also contained novel proteins, encoded by venom genes conserved in Campopleginae ichneumonids, and proteins with similarities to active molecules identified in other parasitoid species, such as calreticulin, reprolysin, superoxide dismutase and serpin. However, some of these proteins appear to be produced only in small amounts or to not be secreted. Possibly, in Campopleginae carrying polydnaviruses, the host-modifying activities of venom became redundant following the acquisition of polydnaviruses by the lineage.  相似文献   

9.
10.
张忠  叶恭银  胡萃 《昆虫学报》2004,47(5):551-561
活体微注射测定结果表明,将0.5毒囊当量(venom reservoir equivalent, VRE)的蝶蛹金小蜂毒液注射于其寄主菜粉蝶蛹体内,注射后4~24 h寄主浆血细胞和颗粒血细胞的延展、存活和对Sephadex A50微珠的包囊能力显著下降;以0.002~0.02 VRE/μL的该蜂毒液处理其离体寄主血细胞均能产生同样的生理效应。该毒液抑制90%菜粉蝶蛹浆血细胞和颗粒血细胞延展的浓度各为0.00076 VRE/μL和0.00804 VRE/μL。可见,蝶蛹金小蜂毒液能显著抑制其寄主血细胞的延展和包囊作用,并导致血细胞的死亡。然而,同样条件下丽蝇蛹集金小蜂毒液对其非自然寄主菜粉蝶蛹的血细胞延展、存活和包囊作用则无任何效应。可见,寄生蜂毒液的生理作用具有明显的寄主特异性。  相似文献   

11.
Endoparasitoid wasps inject venom along with their eggs to adjust the physiological and nutritional environment inside their hosts to benefit the development of their offspring. In particular, wasp venoms are known to modify host lipid metabolism, lipid storage in the fat body, and release of lipids into the hemolymph, but how venoms accomplish these functions remains unclear. Here, we use an UPLC-MS-based lipidomics approach to analyze the identities and concentrations of lipids in both fat body and hemolymph of host cabbage butterfly (Pieris rapae) infected by the pupal endoparasitoid Pteromalus puparum. During infection, host fat body levels of highly unsaturated, soluble triacylglycerides (TAGs) increased while less unsaturated, less soluble forms decreased. Furthermore, in infected host hemolymph, overall levels of TAG and phospholipids (the major component of cell membranes) increased, suggesting that fat body cells are destroyed and their contents are dispersed. Altogether, these data suggest that wasp venom induces host fat body TAGs to be transformed into lower melting point (more liquid) forms and released into the host hemolymph following infection, allowing simple absorption and nutritional acquisition by wasp larvae. Finally, cholesteryl esters (CEs, a dietary lipid derived from cholesterol) increased in host hemolymph following infection with no concomitant decrease in host cholesterol, implying that the wasp may provide this necessary food resource to its offspring via its venom. This study provides novel insight into how parasitoid infection alters lipid metabolism in insect hosts, and begins to uncover the wasp venom proteins responsible for host physiological changes and offspring development.  相似文献   

12.
Abstract Studies on the effect of parasitization by the endoparasitoid on host humoral immune reactions are carried out with the pupal endoparisitic wasp, Pteromalus puparum, and its host, Pieris rapae. Phenoloxidase (PO) activity of parasitized hosts hemolymph increased significantly at 12 h, day four and day five after parasitization. Hem‐agglutination activity of parasitized hosts hemolymph was always higher than that of wounded and unparasitized ones. Moreover, antibacterial activity of parasitized hosts hemolymph became more and more stronger, whilst wounded and unparasitized pupae only owned a weak antibacterial activity. It suggested that activities of humoral immune factors of Pieris rapae could be influenced to some degrees by P. puparum.  相似文献   

13.
14.
Glucosinolates are token stimuli in host selection of many crucifer specialist insects, but the underlying molecular basis for host selection in these insects remains enigmatic. Using a combination of behavioral, electrophysiological, and molecular methods, we investigate glucosinolate receptors in the cabbage butterfly Pieris rapae. Sinigrin, as a potent feeding stimulant, elicited activity in larval maxillary lateral sensilla styloconica, as well as in adult medial tarsal sensilla. Two P. rapae gustatory receptor genes PrapGr28 and PrapGr15 were identified with high expression in female tarsi, and the subsequent functional analyses showed that Xenopus oocytes only expressing PrapGr28 had specific responses to sinigrin; when ectopically expressed in Drosophila sugar sensing neurons, PrapGr28 conferred sinigrin sensitivity to these neurons. RNA interference experiments further showed that knockdown of PrapGr28 reduced the sensitivity of adult medial tarsal sensilla to sinigrin. Taken together, we conclude that PrapGr28 is a gustatory receptor tuned to sinigrin in P. rapae, which paves the way for revealing the molecular basis of the relationships between crucifer plants and their specialist insects.  相似文献   

15.
吴玛莉  朱家颖  胡萃  叶恭银 《昆虫学报》2008,51(11):1144-1150
为了建立蝶蛹金小蜂Pteromalus puparum毒液抑制寄主血细胞免疫活性组分合适的分离纯化方法,就等电点沉淀法、乙醇沉淀法、75%硫酸铵沉淀法、75%硫酸铵沉淀法+40℃加热处理法,以及75%硫酸铵沉淀法分别与3种不同滤膜的分子大小截留法的组合等7种方法对毒液蛋白分离效果及活性的影响进行了比较。结果表明:等电点沉淀法获得的组分抑制寄主菜粉蝶Pieris rapae离体血细胞延展和包囊的活性最强,乙醇沉淀法次之,75%硫酸铵沉淀法最弱。从蛋白组分的SDS-PAGE图谱来看,等电点沉淀法获得毒液组分相对最纯,仅有3条主要谱带,分子量大小在45~116.2 kDa范围内;乙醇沉淀法次之,有5条主要谱带,分子量大小在24~116.2 kDa范围内;硫酸铵沉淀法的谱带组成与毒液蛋白粗提液相似。3种分子大小截留法获得的毒液组分的活性分析表明,强活性组分分子量大小可能都大于100 kDa。综合认为,7种方法中以等电点沉淀法提取分离蝶蛹金小蜂毒液蛋白相对为最适。  相似文献   

16.
17.
Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.  相似文献   

18.
《Gene》1996,172(2):267-272
Three Trimeresurus okinavensis (To; himehabu snake, Crotalinae) venom gland phospholipase A2 (PLA2) isozymeencoding genes, gPLA2-o1, gPLA2-o2 and gPLA2-o3, were isolated from its genomic DNA library. The nucleotide (nt) sequence analysis revealed that two of the three genes (gPLA2-o2) and (gPLA2-o3) occasionally have been converted to inactivated genes by introduction of one base insertion or substitution. It was confirmed from Southern blot analysis that the To haploid genome contains only three venom gland PLA2 isozyme genes herein isolated. Comparison of these genes showed that nonsynonymous nt substitutions have occurred more frequently than synonymous nt substitutions in the protein-coding regions, except for the signal-peptide coding domain, implying that To venom gland PLA2isozyme genes have evolved via accelerated evolution. Such an evolutionary feature of To venom gland PLA2 isozyme genes proves the general universality of accelerated evolution previously drawn for venom gland PLA2 isozyme genes of other crotalinae snakes. The variability in the mature protein-coding regions of three To venom gland PLA2 isozyme genes appears to have been brought about by natural selection for point mutations.  相似文献   

19.
《Journal of Asia》2006,9(4):339-346
A gregarious endoparasitoid wasp, Cotesia glomerata, parasitizes the cabbage butterfly, Pieris rapae. During wandering larval stage for pupal metamorphosis, the parasitoid larvae egress from the parasitized host to form cocoons thus eventually leading to death of the host. This study focused on the effect of C. glomerata parasitization on cellular immune response of P. rapae. For this purpose, an ideal anticoagulant buffer was formulated to procure the hemocytes in native form with morphological, behavioral, and functional characteristics. The hemocytes selectively encapsulated only DEAE beads under in vitro conditions and a quantitative study revealed about 70% of the beads being encapsulated. On the other hand, calyx fluid from C. glomerata injected to P. rapae markedly inhibited the spreading ability of the hemocytes in a dose-dependent manner and also attenuated the in vitro encapsulation response of the hemocytes against the cationic bead. The calyx fluid contained polydnavirus as well as ovarian proteins. The isolated polydnavirus genome consisted of variously sized-segments with their unequal amounts. The P. rapae injected with the calyx fluid expressed several polydnaviral genes within 2 h. These results suggest that the immunosuppression of the parasitized P. rapae may be induced by the polydnaviral gene products as well as ovarian proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号