首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
DNA-dependent RNA polymerase of thermoacidophilic archaebacteria   总被引:7,自引:0,他引:7  
Among 979 non-glycerol growers of the yeast Schizosaccharomyces pombe, 40 strains were found to be deficient in the mitochondrial ATPase activity. Three of them exhibited an alteration in either the alpha or beta subunits of the F1ATPase. The alpha subunit was not immunodetected in the A23/13 mutant. The beta subunit was not immuno-detected in the B59/1 mutant. The existence of these two mutants shows that the alpha and beta subunits can be present independently of each other in the inner mitochondrial membrane. The beta subunit of the mutant F25/28 had a slower electrophoretic mobility than that of the wild-type beta subunit. This phenotype indicates abnormal processing or specific modification of the beta subunit. All mutants showed reduced activities of the NADH-cytochrome c reductase and of the cytochrome oxidase and a decreased synthesis of cytochrome aa3 and cytochrome b. This pleiotropic phenotype appears to result from specific modifications in the mitochondrial protein synthesis. The mitochondrial synthesis of four polypeptides (three cytochrome oxidase and one cytochrome b subunits) was markedly decreased or absent while three new polypeptides (Mr = 54000, 20000 and 15000) were detected in all the mutants analysed. This observation suggests that a functional F1ATPase is necessary for the correct synthesis and/or assembly of the mitochondrially made components of the cytochrome oxidase and cytochrome b complexes.  相似文献   

2.
Inhibition of RNA editing by down-regulation of expression of the mitochondrial RNA editing TUTase 1 by RNA interference had profound effects on kinetoplast biogenesis in Trypanosoma brucei procyclic cells. De novo synthesis of the apocytochrome b and cytochrome oxidase subunit I proteins was no longer detectable after 3 days of RNAi. The effect on protein synthesis correlated with a decline in the levels of the assembled mitochondrial respiratory complexes III and IV, and also cyanide-sensitive oxygen uptake. The steady-state levels of nuclear-encoded subunits of complexes III and IV were also significantly decreased. Because the levels of the corresponding mRNAs were not affected, the observed effect was likely due to an increased turnover of these imported mitochondrial proteins. This induced protein degradation was selective for components of complexes III and IV, because little effect was observed on components of the F(1).F(0)-ATPase complex and on several other mitochondrial proteins.  相似文献   

3.
The modeling of the rotatory mechanism performed by the F(1)-ATPase complex during ATP synthesis shows that the beta, but not the alpha subunit, undergoes large conformational changes that depend on the occupancy of the catalytic site. Here we determined by fluorescence spectroscopy the changes in tertiary structure and hydrophobic exposed area of the isolated alpha and beta subunits of the F(1)-ATPase complex from Escherichia coli upon adenine nucleotide binding. The results show that in the absence of intersubunit contacts, the two subunits exhibit markedly similar conformational movements.  相似文献   

4.
In order to characterize the biogenesis of unique thermogenic mitochondria of brown adipose tissue, differentiation of precursor cells isolated from mouse brown adipose tissue was studied in cell culture. Synthesis of mitochondrial uncoupling protein (UCP), F1-ATPase, and cytochrome oxidase was examined by L-[35S]methionine labeling and immunoblotting. For the first time, synthesis of physiological amounts of the UCP, a key and tissue-specific component of thermogenic mitochondria, was observed in cultures at about confluence (day 6), indicating that a complete differentiation of brown adipocytes was achieved in vitro. In postconfluent cells (day 8) the content of UCP decreased rapidly, in contrast to some other mitochondrial proteins (beta subunit of F1-ATPase, cytochrome oxidase). In these cells, it was possible, by using norepinephrine, to induce specifically the synthesis of the UCP but not of F1-ATPase or cytochrome oxidase. The maximal response was observed at 0.1 microM norepinephrine and the synthesis of UCP remained activated for at least 24 h. Detailed analysis revealed a major role of the beta-adrenergic receptors and elevated intracellular concentration of cAMP in stimulation of UCP synthesis. A quantitative recovery of the newly synthesized UCP in the mitochondrial fraction indicated completed biogenesis of functionally competent thermogenic mitochondria.  相似文献   

5.
6.
The vicinity of nucleotide binding sites and the mechanism of ATP synthesis/hydrolysis have been studied with the bifunctional photosensitive ATP analog 3'-arylazido-8-azido-ATP. 3'-Arylazido-8-azido-ATP is hydrolyzed by the F1-ATPase from Micrococcus luteus in the absence of ultraviolet light. Irradiation, by ultraviolet light, of F1-ATPase in the presence of 3'-arylazido-8-azido-ATP results in the specific formation of cross-links between alpha and beta subunits. The results suggest that a hydrolytic nucleotide binding site is located on a beta subunit at or near an alpha subunit, probably at the interface between these subunits. Such a constellation would permit direct subunit-subunit interactions during ATP synthesis/hydrolysis.  相似文献   

7.
Normal modes have been used to explore the inherent flexibility of the alpha, beta and gamma subunits of F(1)-ATPase in isolation and as part of the alpha(3)beta(3)gamma complex. It was found that the structural plasticity of the gamma and beta subunits, in particular, correlates with their functions. The N and C-terminal helices forming the coiled-coil domain of the gamma subunit are highly flexible in the isolated subunit, but more rigid in the alpha(3)beta(3)gamma complex due to interactions with other subunits. The globular domain of the gamma subunit is structurally relatively rigid when isolated and in the alpha(3)beta(3)gamma complex; this is important for its functional role in coupling the F(0) and F(1) complex of ATP synthase and in inducing the conformational changes of the beta subunits in synthesis. Most important, the character of the lowest-frequency modes of the beta(E) subunit is highly correlated with the large beta(E) --> beta(TP) transition. This holds for the C-terminal domain and the nucleotide-binding domain, which undergo significant conformational transitions in the functional cycle of F(1)-ATPase. This is most evident in the ligand-free beta(E) subunit; the flexibility in the nucleotide-binding domain is reduced somewhat in the beta(TP) subunit in the presence of Mg(2+).ATP. The low-frequency modes of the alpha(3)beta(3)gamma complex show that the motions of the globular domain of the gamma subunit and of the C-terminal and nucleotide binding domains of the beta(E) subunits are coupled, in accord with their function. Overall, the normal mode analysis reveals that F(1)-ATPase, like other macromolecular assemblies, has the intrinsic structural flexibility required for its function encoded in its sequence and three-dimensional structure. This inherent plasticity is an essential aspect of assuring a small free energy cost for the large-scale conformational transition that occurs in molecular motors.  相似文献   

8.
Using site-directed mutagenesis, Glu-190 or Glu-201 of the beta subunit of the F1-ATPase from the thermophilic bacterium PS3 were replaced with glutamine. It was possible to reconstitute complexes of the mutated beta subunits with alpha and gamma subunits, but the complexes did not have ATPase activity. It is concluded that carboxylic acid side chains of Glu-190 and Glu-201 of the beta subunit are essential for catalytic activity of F1-ATPase.  相似文献   

9.
The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.  相似文献   

10.
The nearest neighbor relationships of bovine mitochondrial H(+)-ATPase subunits were investigated by the chemical cross-linking approach using the homobifunctional cleavable reagents dithiobis(succinimidyl propionate) and disuccinimidyl tartrate. Cross-linked proteins were resolved by one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Individual subunits were detected by silver staining or by Western blotting and staining with subunit-specific antisera. Products larger than 80,000 daltons were not analyzed. Interactions between F1 subunits included cross-links between gamma and delta as well as gamma and epsilon subunits. Among F0 subunit interactions were observed cross-links of (i) coupling factor 6 (F6) with 8-, 20-, and 24-kDa proteins, (ii) oligomycin sensitivity-conferring protein (OSCP) with 24-kDa protein, and (iii) 20-kDa protein with 24-kDa protein. In addition, several cross-links among subunits involving F1 and F0 sectors were detected. These included cross-links between F6 and alpha, F6 and gamma, OSCP and alpha/beta, and 24-kDa protein and alpha/beta. Thus, OSCP, F6, and the 24-kDa protein were found to form cross-links with both F1 and F0 subunits. The surface accessibility of F0 subunits was investigated by subjecting aliquots of F0 to trypsin treatment. Our data demonstrated that the rate of degradation was in the order OSCP greater than 24-kDa protein greater than or equal to F6 greater than subunit 6. The degradation of subunits of F0 was prevented in intact or reconstituted F1-F0. Based on our present and previously published observations, a model of H(+)-ATPase has been proposed wherein OSCP, F6, and the 24-kDa protein are placed in the stalk region and the alpha and beta subunits of F1-ATPase have been extended down to the membrane surface to enclose the stalk segment.  相似文献   

11.
The mitochondrial F1-ATPase from bean (Vicia faba L.) was solubilized by a chloroform treatment of mitochondrial membranes and purified by centrifugation on a glycerol gradient. The active fraction contained 5 subunits: alpha (Mr = 52,000), beta (Mr = 51,000), gamma (Mr = 34,000), delta (Mr = 23,800), and epsilon (Mr = 22,900). Purified coupled mitochondria were incubated in the presence of [ 35S ]methionine and malate to allow mitochondrial translation to occur. The largest labeled polypeptide (Mr = 52,000) was present in the chloroform extract, co-sedimented with the F1-ATPase on glycerol gradient and co-migrated with the alpha subunit upon two-dimensional electrophoresis. The results indicate that the alpha subunit of bean mitochondrial ATPase is translated on mitoribosomes, in contrast to the situation in other organisms.  相似文献   

12.
A single gene nuclear yeast mutant was isolated whose mitochondrial F1-ATPase was resistant to the specific F1 inhibitor aurovertin. The mutant enzyme was not cross-resistant to other F1 inhibitors. The binding of aurovertin to F1 and to the two largest F1 subunits (alpha and beta) was measured by enhancement of aurovertin fluorescence. Aurovertin bound to wild type F1-ATPase and to its monomeric beta subunit with about the same binding constant. It failed to bind to wild type alpha subunit or to either F1 or F1 subunits from the mutant. The aurovertin-resistant mutant thus contains an altered nuclear gene which specifies the structure of the beta subunit of F1.  相似文献   

13.
Digestion of the F1-ATPase of Escherichia coli with trypsin stimulated ATP hydrolytic activity and removed the delta and epsilon subunits of the enzyme. A species represented by the formula alpha 1(3) beta 1(3) gamma 1, where alpha 1, beta 1 and gamma 1 are forms of the native alpha, beta and gamma subunits which have been attacked by trypsin, was formed by trypsin digestion in the presence of ATP. In the presence of ATP and MgCl2, conversion of gamma to gamma 1 was retarded and the enzyme retained the epsilon subunit. These results imply that binding of ATP to the beta subunits alters the conformation of ECF1 to increase the accessibility of the gamma subunit to trypsin. The likely trypsin cleavage sites in the alpha, beta and gamma subunits are discussed. ECF1 from the alpha subunit-defective mutant uncA401, or after treatment with N,N'-dicyclohexylcarbodiimide or 4-chloro-7-nitrobenzofurazan, was present in a conformation in which the gamma subunit was readily accessible to trypsin and could not be protected by the presence of ATP and MgCl2. In a similar manner to native E. coli F1-ATPase, the hydrolytic activity of the trypsin-digested enzyme was stimulated by the detergent lauryldimethylamine N-oxide. Since the digested enzyme lacked the epsilon subunit, a putative inhibitor of hydrolytic activity, a mechanism for the stimulation which involves loss or movement of this subunit is untenable.  相似文献   

14.
Three proteins of the inner mitochondrial membrane of Neurospora crassa were found to be covalently modified with a derivative of pantothenic acid. One of these proteins is a subunit of cytochrome c oxidase and two are subunits of the ATPase-ATP synthase. Cells of a pantothenate auxotroph of N. crassa were labeled with [14C]pantothenic acid, and mitochondrial proteins containing radiolabeled pantothenate were detected by electrophoresis of detergent-solubilized mitochondria. Mitochondria from cells that were colabeled with [14C]pantothenate and [3H]leucine were reacted with specific antisera against the cytochrome c oxidase and F1-ATPase enzyme complexes. Electrophoresis of the labeled subunits of these isolated complexes showed that the [14C]pantothenate-associated peptides corresponded to [3H]leucine-labeled subunit 6 of cytochrome c oxidase and two [3H]leucine-labeled subunits (tentatively identified as subunits 8 and 11) of the ATPase-ATP synthase. Pantothenate modification of these enzyme subunits, which are synthesized on extramitochondrial ribosomes, may contribute to their transport and assembly into mitochondria, or it may participate in the catalytic activity of the assembled enzymes.  相似文献   

15.
F1-ATPase is the major enzyme for ATP synthesis in mitochondria, chloroplasts, and bacterial plasma membranes. F1-ATPase obtained from thermophilic bacterium PS3 (TF1) is the only ATPase which can be reconstituted from its primary structure. Its beta subunit constitutes the catalytic site, and is capable of forming hybrid F1's with E. coli alpha and gamma subunits. Since the stability of TF1 resides in its primary structure, we cloned a gene coding for TF1, and the primary structure of the beta subunit was deduced from the nucleotide sequence of the gene to compare the sequence with those of beta's of three major categories of F1's; prokaryotic membranes, chloroplasts, and mitochondria. The following results were obtained. Homology: The primary structure of the TF1 beta subunit (473 residues, Mr = 51,995.6) showed 89.3% homology with 270 residues which are identical in the beta subunits from human mitochondria, spinach chloroplasts, and E. coli. It contained regions homologous to several nucleotide-binding proteins. Secondary structure: The deduced alpha-helical (30.1%) and beta-sheet (22.3%) contents were consistent with those determined from the circular dichroism spectra. Residues forming reverse turns (Gly and Pro) were highly conserved among the F1 beta subunits. Substituted residues and stability of TF1: We compared the amino acid sequence of the TF1 beta subunit with those of the other F1 beta subunits mentioned above. The observed substitutions in the thermophilic subunit increased its propensities to form secondary structures, and its external polarity to form tertiary structure. Codon usage: The codon usage of the TF1 beta gene was found to be unique. The changes in codons that achieved these amino acid substitutions were much larger than those caused by minimal mutations, and the third letters of the optimal codons were either guanine or cytosine, except in codons for Gln, Lys, and Glu.  相似文献   

16.
Poly(A)-rich RNA from phenol-extracted rat liver polysomes was translated in a heterologous cell-free system derived from wheat germs. The labeled translation products were incubated with an antiserum against cytochrome c oxidase subunit V. After immunoprecipitation and affinity chromatography with protein-A-Sepharose, the isolated antigen-immunoglobulin complexes were analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and fluorography. Only one protein with an apparent molecular weight of 15 500 was visualized. In immunocompetition experiments with unlabeled individual cytochrome c oxidase subunits IV, V, VI or VII only subunit V could compete with the 15 500-Mr protein synthesized in vitro. Two-dimensional fingerprints of cytochrome c oxidase subunit V and the polypeptide synthesized in vitro showed a high degree of similarity. It is concluded that the cytochrome c oxidase subunit V is synthesized as a precursor with an amino-terminal extension of about 25 amino acids. It was possible to convert the precursor of cytochrome c oxidase subunit V synthesized in vitro to its mature form by intact mitochondria as well as by submitochondrial particles. A chain length of 830 +/- 70 nucleotides was estimated for the poly(A)-rich mRNA of the higher-molecular-weight precursor of rat liver cytochrome c oxidase subunit V. Assuming a molecular weight of 15 500 for the precursor a non-coding region of about 300 nucleotides must exist. In experiments on the site of synthesis it is shown that the poly(A)-rich RNA for the higher-molecular-weight precursor of cytochrome c oxidase subunit V is found in free, loosely and tightly membrane-bound polyribosomes.  相似文献   

17.
Cytochrome b-245, the only clearly identified component of the microbicidal oxidase system of phagocytes, is a heterodimer consisting of a 23 kDa (alpha) and a 76-92 kDa (beta) subunit. This study was conducted to examine whether, in common with a number of proteins, the subunits of the cytochrome were phosphorylated upon activation of the oxidase. Both subunits were phosphorylated after activation of neutrophils or macrophages with phorbol myristate acetate or a phagocytic stimulus, although the time course of this process did not parallel that of the oxidase. Phosphorylation of these proteins was normal in cells from two patients with autosomal recessive chronic granulomatous disease, in whom phosphorylation of a 47 kDa protein is defective.  相似文献   

18.
In the crystal structure of mitochondrial F1-ATPase, two beta subunits with a bound Mg-nucleotide are in "closed" conformations, whereas the third beta subunit without bound nucleotide is in an "open" conformation. In this "CCO" (beta-closed beta-closed beta-open) conformational state, Ile-390s of the two closed beta subunits, even though they are separated by an intervening alpha subunit, have a direct contact. We replaced the equivalent Ile of the alpha3beta3gamma subcomplex of thermophilic F1-ATPase with Cys and observed the formation of the beta-beta cross-link through a disulfide bond. The analysis of conditions required for the cross-link formation indicates that: (i) F1-ATPase takes the CCO conformation when two catalytic sites are filled with Mg-nucleotide, (ii) intermediate(s) with the CCO conformation are generated during catalytic cycle, (iii) the Mg-ADP inhibited form is in the CCO conformation, and (iv) F1-ATPase dwells in conformational state(s) other than CCO when only one (or none) of catalytic sites is filled by Mg-nucleotide or when catalytic sites are filled by Mg2+-free nucleotide. The alpha3beta3gamma subcomplex containing the beta-beta cross-link retained the activity of uni-site catalysis but lost that of multiple catalytic turnover, suggesting that open-closed transition of beta subunits is required for the rotation of gamma subunit but not for hydrolysis of a single ATP.  相似文献   

19.
We have generated nine monoclonal antibodies against subunits of the maize (Zea mays L.) mitochondrial F1-ATPase. These monoclonal antibodies were generated by immunizing mice against maize mitochondrial fractions and randomly collecting useful hybridomas. To prove that these monoclonal antibodies were directed against ATPase subunits, we tested their cross-reactivity with purified F1-ATPase from pea cotyledon mitochondria. One of the antibodies ([alpha]-ATPaseD) cross-reacted with the pea F1-ATPase [alpha]-subunit and two ([beta]-ATPaseD and [beta]-ATPaseE) cross-reacted with the pea F1-ATPase [beta]-subunit. This established that, of the nine antibodies, four react with the maize [alpha]-ATPase subunit and the other five react with the maize [beta]-ATPase subunit. Most of the monoclonal antibodies cross-react with the F1-ATPase from a wide range of plant species. Each of the four monoclonal antibodies raised against the [alpha]-subunit recognizes a different epitope. Of the five [beta]-subunit antibodies, at least three different epitopes are recognized. Direct incubation of the monoclonal antibodies with the F1-ATPase failed to inhibit the ATPase activity. The monoclonal antibodies [alpha]-ATPaseD and [beta]-ATPaseD were bound to epoxide-glass QuantAffinity beads and incubated with a purified preparation of pea F1-ATPase. The ATPase activity was not inhibited when the antibodies bound the ATPase. The antibodies were used to help map the pea F1-ATPase subunits on a two-dimensional map of whole pea cotyledon mitochondrial protein. In addition, the antibodies have revealed antigenic similarities between various isoforms observed for the [alpha]- and [beta]-subunits of the purified F1-ATPase. The specificity of these monoclonal antibodies, along with their cross-species recognition and their ability to bind the F1-ATPase without inhibiting enzymic function, makes these antibodies useful and invaluable tools for the further purification and characterization of plant mitochondrial F1-ATPases.  相似文献   

20.
F1-ATPase, a soluble part of the F0F1-ATP synthase, has subunit structure alpha3beta3gammadeltaepsilon in which nucleotide-binding sites are located in the alpha and beta subunits and, as believed, in none of the other subunits. However, we report here that the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus strain PS3 can bind ATP. The binding was directly demonstrated by isolating the epsilon subunit-ATP complex with gel filtration chromatography. The binding was not dependent on Mg2+ but was highly specific for ATP; however, ADP, GTP, UTP, and CTP failed to bind. The epsilon subunit lacking the C-terminal helical hairpin was unable to bind ATP. Although ATP binding to the isolated epsilon subunits from other organisms has not been detected under the same conditions, a possibility emerges that the epsilon subunit acts as a built in cellular ATP level sensor of F0F1-ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号