首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7250篇
  免费   1007篇
  国内免费   1篇
  2021年   82篇
  2016年   111篇
  2015年   191篇
  2014年   196篇
  2013年   285篇
  2012年   334篇
  2011年   328篇
  2010年   210篇
  2009年   218篇
  2008年   306篇
  2007年   298篇
  2006年   266篇
  2005年   228篇
  2004年   240篇
  2003年   233篇
  2002年   242篇
  2001年   233篇
  2000年   230篇
  1999年   195篇
  1998年   76篇
  1997年   88篇
  1996年   78篇
  1995年   63篇
  1994年   71篇
  1993年   65篇
  1992年   127篇
  1991年   136篇
  1990年   152篇
  1989年   132篇
  1988年   137篇
  1987年   121篇
  1986年   127篇
  1985年   141篇
  1984年   109篇
  1983年   124篇
  1982年   99篇
  1981年   81篇
  1980年   82篇
  1979年   113篇
  1978年   87篇
  1977年   78篇
  1976年   71篇
  1975年   87篇
  1974年   84篇
  1973年   82篇
  1972年   85篇
  1971年   66篇
  1970年   86篇
  1969年   76篇
  1967年   70篇
排序方式: 共有8258条查询结果,搜索用时 15 毫秒
1.
2.
3.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
4.
Oligomycin sensitivity conferral protein (OSCP), factor 6 (F6), and ATPase inhibitor protein are all components of the ATP synthase complex of bovine mitochondria. They are encoded in nuclear DNA. Complementary DNA clones encoding the precursors of these proteins have been isolated from a bovine library by using mixtures of synthetic oligonucleotides as hybridization probes, and their DNA sequences have been determined. The deduced protein sequences show that the OSCP, F6, and inhibitor proteins have N-terminal presequences of 23, 32, and 25 amino acids, respectively. These presequences are not present in the mature proteins. It is assumed that they serve to direct the proteins into the mitochondrial matrix. The cDNA clones have also been employed as hybridization probes to investigate the genetic complexity of the three proteins in cows and humans. These experiments indicate that the bovine and human inhibitor and bovine F6 proteins are encoded by single genes but suggest the possibility of the presence in both species of more than one gene (or pseudogenes) for the OSCP.  相似文献   
5.
Functional rarefaction: estimating functional diversity from field data   总被引:1,自引:1,他引:0  
Studies in biodiversity-ecosystem function and conservation biology have led to the development of diversity indices that take species' functional differences into account. We identify two broad classes of indices: those that monotonically increase with species richness (MSR indices) and those that weight the contribution of each species by abundance or occurrence (weighted indices). We argue that weighted indices are easier to estimate without bias but tend to ignore information provided by rare species. Conversely, MSR indices fully incorporate information provided by rare species but are nearly always underestimated when communities are not exhaustively surveyed. This is because of the well-studied fact that additional sampling of a community may reveal previously undiscovered species. We use the rarefaction technique from species richness studies to address sample-size-induced bias when estimating functional diversity indices. Rarefaction transforms any given MSR index into a family of unbiased weighted indices, each with a different level of sensitivity to rare species. Thus rarefaction simultaneously solves the problem of bias and the problem of sensitivity to rare species. We present formulae and algorithms for conducting a functional rarefaction analysis of the two most widely cited MSR indices: functional attribute diversity (FAD) and Petchey and Gaston's functional diversity (FD). These formulae also demonstrate a relationship between three seemingly unrelated functional diversity indices: FAD, FD and Rao's quadratic entropy. Statistical theory is also provided in order to prove that all desirable statistical properties of species richness rarefaction are preserved for functional rarefaction.  相似文献   
6.
Experiments were performed on isolated salt-perfused rat lungs to determine the receptor type(s) responsible for the pulmonary vascular effects of the neurohypophyseal peptides arginine vasopressin (AVP) and oxytocin. Bolus administration of AVP to lungs preconstricted with the thromboxane mimetic U-46619 resulted in a dose-dependent vasodilatory response (approximately 65% reversal of U-46619-induced vasoconstriction at the highest dose tested) that was blocked by pretreatment with a selective V1- but not by a selective V2-vasopressinergic receptor antagonist. Administration of a selective V1-agonist to the preconstricted pulmonary vasculature resulted in a vasodilatory response similar to that observed with AVP (approximately 55% reversal of U-46619 vasoconstriction), which was blocked by prior administration of the selective V1-receptor antagonist. Administration of the selective V2-receptor agonist desmopressin to the preconstricted pulmonary vasculature resulted in a small (approximately 8% reversal of U-46619 vasoconstriction) vasodilatory response that was, nevertheless, greater than that produced by addition of vehicle alone and was attenuated by pretreatment with a selective V2-receptor antagonist. Finally, oxytocin also caused vasodilation in the preconstricted pulmonary vasculature; however, the potency of oxytocin was approximately 1% of AVP, and the vasodilation produced by oxytocin was blocked by prior administration of a selective V1-receptor antagonist, suggesting that oxytocin acts via V1-vasopressinergic receptor stimulation. We conclude from these experiments that AVP and oxytocin dilate the preconstricted pulmonary vasculature primarily via stimulation of V1-vasopressinergic receptors. V2-receptor stimulation results in a minor vasodilatory response, although its physiological significance is unclear.  相似文献   
7.
8.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号