首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new triterpenoid saponins, elucidated as 3-O-β-d-glucopyranosyloleanolic acid 28-O-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranoside (parkioside A, 1), 3-O-[β-d-apifuranosyl-(1→3)-β-d-glucopyranosyl]oleanolic acid 28-O-[β-d-apifuranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)β-d-xylopyranoside (parkioside B, 2) and 3-O-β-d-glucuronopyranosyl-16α-hydroxyprotobassic acid 28-O-α-l-rhamnopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranoside (parkioside C, 3), were isolated from the n-BuOH extract of the root bark of Butyrospermum parkii, along with the known 3-O-β-d-glucopyranosyloleanolic acid (androseptoside A). The structures of the isolated compounds were established on the basis of chemical and spectroscopic methods, mainly 1D and 2D NMR data and mass spectrometry. The new compounds were tested for both radical scavenging and cytotoxic activities. Compound 2 showed cytotoxic activity against A375 and T98G cell lines, with IC50 values of 2.74 and 2.93 μM, respectively. Furthermore, it showed an antioxidant activity comparable to that of Trolox or butylated hydroxytoluene (BHT), used as controls, against 2,2-diphenyl-1-picryl hydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), oxygen and nitric oxide radicals.  相似文献   

2.
Phytochemical investigation of the underground parts of Liriope graminifolia (Linn.) Baker resulted in the isolation of two new steroidal saponins lirigramosides A (1) and B (2) along with four known compounds. The structures were determined by extensive spectral analysis, including two-dimensional (2D) NMR spectroscopy and chemical methods, to be 3-O-{β-d-xylopyranosyl-(1→3)-α-l-arabinopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→4)]-β-d-glucopyranosyl-(25S)-spirost-5-ene-3β,17α-diol (1), 1-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]-(25R)-ruscogenin (2), 1-O-β-d-xylopyranosyl-3-O-α-l-rhamnopyranosyl-(25S)-ruscogenin (3), 3-O-α-l-rhamnopyranosyl-1-O-sulfo-(25S)-ruscogenin (4), methylophiopogonanone B (5), and 5,7-dihydroxy-3-(4-methoxybenzyl)-6-methyl-chroman-4-one, (ophiopogonanone B, 6), respectively. Compound 1 has a new (25S)-spirost-5-ene-3β,17α-diol ((25S)-pennogenin) aglycone moiety. The isolated compounds were evaluated for their cytotoxic activities against Hela and SMMC-7721 cells.  相似文献   

3.
Evaluation of the cytotoxicity of an ethanolic root extract of Sideroxylonfoetidissimum subsp. gaumeri (Sapotaceae) revealed activity against the murine macrophage-like cell line RAW 264.7. Systematic bioassay-guided fractionation of this extract gave an active saponin-containing fraction from which four saponins were isolated. Use of 1D (1H, 13C, DEPT135) and 2D (COSY, TOCSY, HSQC, and HMBC) NMR, mass spectrometry and sugar analysis gave their structures as 3-O-(β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl)-28-O-(α-l-rhamnopyranosyl-(1 → 3)[β-d-xylopyranosyl-(1 → 4)]-β-d-xylopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-16α-hydroxyprotobassic acid, 3-O-β-d-glucopyranosyl-28-O-(α-l-rhamnopyranosyl-(1 → 3)[β-d-xylopyranosyl-(1 → 4)]-β-d-xylopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-16α-hydroxyprotobassic acid, 3-O-(β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl)-28-O-(α-l-rhamnopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-16α-hydroxyprotobassic acid, and the known compound, 3-O-β-d-glucopyranosyl-28-O-(α-l-rhamnopyranosyl-(1 → 3)[β-d-xylopyranosyl-(1 → 4)]-β-d-xylopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-protobassic acid. Two further saponins were obtained from the same fraction, but as a 5:4 mixture comprising 3-O-(β-d-glucopyranosyl)-28-O-(α-l-rhamnopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-16α-hydroxyprotobassic acid and 3-O-(β-d-apiofuranosyl-(1 → 3)-β-d-glucopyranosyl)-28-O-(α-l-rhamnopyranosyl-(1 → 3)[β-d-xylopyranosyl-(1 → 4)]-β-d-xylopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)-16α-hydroxyprotobassic acid, respectively. This showed greater cytotoxicity (IC50 = 11.9 ± 1.5 μg/ml) towards RAW 264.7 cells than the original extract (IC50 = 39.5 ± 4.1 μg/ml), and the saponin-containing fraction derived from it (IC50 = 33.7 ± 6.2 μg/ml).  相似文献   

4.
Three oleanane-type saponins, 3-O-β-d-glucopyranosylechinocystic acid 28-O-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→2)]-α-l-rhamnopyranosyl ester (1), 3-O-β-d-glucopyranosylechinocystic acid 28-O-α-l-arabinopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[α-l-rhamnopyranosyl-(1→2)]-α-l-rhamnopyranosyl ester (2), 3-O-β-d-glucopyranosylcaulophyllogenin 28-O-β-d-apiofuranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[β-d-apiofuranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-α-l-rhamnopyranosyl ester (3) were isolated from the whole plant of Arenaria montana. Their unusual structures for the Caryophyllaceae family were established mainly by 2D NMR techniques and mass spectrometry.  相似文献   

5.
Two new furostanol saponins, 3-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl]-26-O-β-d-glucopyranosyl-25(R)-furosta-5,22(23)-dien-3β,20α,26-triol (1), 3-O-[β-d-glucopyranosyl-(1→3)-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-26-O-β-d-glucopyranosyl-20(R)-methoxyl-25(R)-furosta-5,22(23)-dien-3β,26-diol (2) were isolated from the Dioscorea panthaica along with five known steroidal saponins (37). The structures of the new saponins were determined by detailed analysis of spectral data (including 2D NMR spectroscopy). The inhibitory activities of the saponins against α-glucosidase were investigated, gracillin (4) and 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-26-O-β-d-glucopyranosyl-25(R)-furosta-5,20(22)-dien-3β,26-diol (5) were found to exhibit potent activities with IC50 values of 0.11 ± 0.04 mM and 0.09 ± 0.01 mM.  相似文献   

6.
Eleven oleanane-type saponins (1-11) have been isolated from Microsechium helleri and Sicyos bulbosus roots and were evaluated for their antifeedant, nematicidal and phytotoxic activities. Saponins {3-O-β-d-glucopyranosyl (1 → 3)-β-d-glucopyranosyl-2β,3β,16α,23-tetrahydroxyolean-12-en-28-oic acid 28-O-α-l-rhamnopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-xylopyranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranoside} (1), and {3-O-β-d-glucopyranosyl-2β,3β,16α,23-tetrahydroxyolean-12-en-28-oic acid 28-O-α-l-rhamnopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-xylopyranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranoside} (2) were also isolated from M. helleri roots together with the two known compounds 3 and 4. Seven known structurally related saponins (5-11) were isolated from S. bulbosus roots. The structures of these compounds were established as bayogenin and polygalacic glycosides using one- and two-dimensional NMR spectroscopy and mass spectrometry. Compounds 7, 10, bayogenin (12) and polygalacic acid (13) showed significant (p < 0.05) postingestive effects on Spodoptera littoralis larvae, compounds 5-11 and 12 showed variable nematicidal effects on Meloydogyne javanica and all tested saponins had variable phytotoxic effects on several plant species (Lycopersicum esculentum, Lolium perenne and Lactuca sativa). These are promising results in the search for natural pesticides from the Cucurbitaceae family.  相似文献   

7.
Four triterpene saponins, 3-O-β-d-glucopyranosylpresenegenin 28-O-β-d-apiofuranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-{4-O-[(E)-3,4,5-trimethoxycinnamoyl]}-β-d-fucopyranosyl ester, 3-O-β-d-glucopyranosylpresenegenin 28-O-β-d-apiofuranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-[(6-O-acetyl)-β-d-glucopyranosyl-(1 → 3)]-{4-O-[(E)-3,4,5-trimethoxycinnamoyl]}-β-d-fucopyranosyl ester, 3-O-β-d-glucopyranosylpresenegenin 28-O-β-d-apiofuranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-[β-d-galactopyranosyl-(1 → 3)]-{4-O-[(E)-3,4,5-trimethoxycinnamoyl]}-β-d-fucopyranosyl ester, and 3-O-β-d-glucopyranosylpresenegenin 28-O-β-d-apiofuranosyl-(1 → 3)-[α-l-arabinopyranosyl-(1 → 4)]-β-d-xylopyranosyl-(1 → 4)-[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-{4-O-[(E)-3,4,5-trimethoxycinnamoyl]}-β-d-fucopyranosyl ester, were isolated from the roots of Securidaca longepedunculata, together with three known compounds. Their structures were established mainly by 2D NMR techniques and mass spectrometry.  相似文献   

8.
Two new saponins, agavasaponin E and agavasaponin H have been isolated from the methanolic extract of Agave americana leaves and their structures elucidated. Agavasaponin E is 3-O-[β-d-xylopyranosyl-(1→2glc1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-α-d-galactopyranosyl]-(25R)-5α-spirostan-12-on-3β-ol, whereas agavasaponin H is 3-O-[β-d-xylopyranosyl-(1→2 glc 1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3 glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-β-d-galactopyranosyl]-26-O-[β-d-glucopyranosyl]-(25R)-5α-furostan-12-on-3β,22α,26-triol.  相似文献   

9.
Zhang Z  Li S  Ownby S  Wang P  Yuan W  Zhang W  Scott Beasley R 《Phytochemistry》2008,69(10):2070-2080
Phytochemical investigation on the whole plant of Eryngium yuccifolium resulted in the isolation and identification of three phenolic compounds (1-3) and 12 polyhydroxylated triterpenoid saponins, named eryngiosides A-L (4-15), together with four known compounds kaempferol-3-O-(2,6-di-O-trans-p-coumaroyl)-β-d-glucopyranoside (16), caffeic acid (17), 21β-angeloyloxy-3β-[β-d-glucopyranosyl-(1→2)]-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyloxyolean-12-ene-15α,16α,22α,28-tetrol (18), and saniculasaponin III (19). This study reports the isolation of these compounds and their structural elucidation by extensive spectroscopic analyses and chemical degradation.  相似文献   

10.
From the commercial extract of the leaves of Stevia rebaudiana, three new diterpenoid glycosides were isolated besides eight known steviol glycosides including stevioside, rebaudiosides A–F and dulcoside A. The structures of the three compounds were identified as 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-kaur-16-en-18-oic acid-(6-O-β-d-xylopyranosyl-β-d-glucopyranosyl) ester (1), 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-17-hydroxy-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (2), and 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-17-oxo-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (3) on the basis of extensive NMR and MS spectral studies. Another known diterpenoid glycoside, 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (4) was also isolated and its complete NMR spectral assignments were made on the basis of COSY, HSQC and HMBC spectral data.  相似文献   

11.
A high-performance liquid chromatography tandem mass spectrometry (HPLC–MS/MS) method employing electrospray ionization (ESI) has been developed for simultaneous determination of lancemaside A (3-O-β-d-glucuronopyranosyl-3β, 16α-dihydroxyolean-12-en-28-oic acid 28-O-β-d-xylopyranosyl(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl ester) and its metabolites in mouse plasma. When lancemaside A (60 mg/kg) was orally administered to mice, echinocystic acid was detected in the blood. Tmax and Cmax of the echinocystic acid were 6.5 ± 1.9 h and 56.7 ± 29.1 ppb. Orally administered lancemaside A was metabolized to lancemaside X (3β, 16α-dihydroxyolean-12-en-28-oic acid 28-O-β-d-xylopyranosyl(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl ester) by intestinal microflora in mice, which was metabolized to echinocystic acid by intestinal microflora and/or intestinal tissues. Human intestinal microflora also metabolized lancemaside A to echinocystic acid via lancemaside X. These results suggest that the metabolism by intestinal microflora may play an important role in pharmacological effects of orally administered lancemaside A.  相似文献   

12.
One new ursane-type triterpenoid glycoside, asiaticoside G (1), five triterpenoids, asiaticoside (2), asiaticoside F (3), asiatic acid (4), quadranoside IV (5), and 2α,3β,6β-trihydroxyolean-12-en-28-oic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester (6), and four flavonoids, kaempferol (7), quercetin (8), astragalin (9), and isoquercetin (10) were isolated from the leaves of Centella asiatica. Their chemical structures were elucidated by mass, 1D- and 2D-nuclear magnetic resonance (NMR) spectroscopy. The structure of new compound 1 was determined to be 2α,3β,23,30-tetrahydroxyurs-12-en-28-oic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester. The anti-inflammatory activities of the isolated compounds were investigated on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Asiaticoside G (1) potently inhibited the production of nitric oxide and tumor necrosis factor-α with inhibition rates of 77.3% and 69.0%, respectively, at the concentration of 100 μM.  相似文献   

13.
14.
Three new flavonol glycosides, namely 6-methoxykaempferol-3-O-β-gentiobioside, gomphrenol-3-O-β-gentiobioside and gomphrenol-3-O-α-l-rhamnopyranosyl-(1 → 2)[β-d-glucopyranosyl-(1 → 6)]-β-d-glucopyranoside as well as the known patuletin-3-O-β-gentiobioside and spinacetin-3-O-β-gentiobioside were isolated from the aerial parts of Chenopodium foliosum Asch. The structures of the compounds were determined by means of spectroscopic methods (1D and 2D NMR, UV, IR, and HRMS). DPPH free radical scavenging activity of the new compounds was low or lacking.  相似文献   

15.
From the commercial extract of the leaves of Stevia rebaudiana, two new minor diterpene glycosides having α-glucosyl linkage were isolated besides the known steviol glycosides including stevioside, steviolbioside, rebaudiosides A–F, rubusoside and dulcoside A. The structures of the two compounds were identified as 13-[(2-O-(3-α-O-d-glucopyranosyl)-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (1), and 13-[(2-O-β-d-glucopyranosyl-3-O-(4-O-α-d-glucopyranosyl)-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester (2), on the basis of extensive NMR and MS spectral data as well as chemical studies.  相似文献   

16.
A bioassay-guided phytochemical analysis of the triterpene saponins from under ground parts of Gypsophila arrostii var. nebulosa allowed the isolation of two triterpene saponins; nebuloside A, B based on gypsogenin and quillaic acid aglycone. Two new oleanane type triterpenoid saponins (nebuloside A, B) and three known saponins (13) were isolated from the root bark of Gypsophila arrostii var. nebulosa. The structures of the two new compounds were elucidated as 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyl quillaic acid 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside A) and 3-O-β-d-xylopyranosyl-(1→3)-[β-d-galactopyranosyl(1→3)-β-d-galactopyranosyl-(1→2)]-β-d-glucuronopyranosyl gypsogenin 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside B), on the basis of extensive spectral analysis and chemical evidence. Nebuloside A and B showed toxicity enhancing properties on saporin a type-I RIP without causing toxicity by themselves at 15 μg/mL.  相似文献   

17.
3,28-Di-O-rhamnosylated oleanolic acid saponins, mimicking components of Chinese folk medicine Di Wu, have been designed and synthesized. One-pot glycosylation and ‘inverse procedure’ technologies have been applied thus significantly simplifying the preparation of desired saponins. The cytotoxic activity of compounds 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]oleanolic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester (3), 3-O-[α-l-rhamnopyranosyl]oleanolic acid 28-O-[α-l-rhamnopyranosyl- (1→4)-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl] ester (4), 3-O-[α-l-rhamnopyranosyl]oleanolic acid 28-O-[α-l-rhamnopyranosyl] ester (5), and 3-O-[α-l-rhamnopyranosyl]oleanolic acid 28-O-[6-O-(α-l-rhamnopyranosyl)hexyl] ester (6) was preliminarily evaluated against HL-60 human promyelocytic leukemia cells. The natural saponin 3 and designed saponin 4 exhibited comparable moderate cytotoxic activity under our testing conditions.  相似文献   

18.
A new steroidal saponin was isolated from the bulbs of Allium ampeloprasum var. porrum. On the basis of chemical conversions and detailed analyses of 1H and 13C NMR spectra including 2D NMR spectroscopic techniques, its structure was established as 3-[(O-β-d-glucopyranosyl-(1 → 3)-β-d-glucopyranosyl-(1 → 2)-O-[O-β-d-glucopyranosyl-(1 → 3)]-O-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranosyl)oxy]-2,6-dihydroxy-(2α,3β,5α,6β,25R)-spirostane. Results of the present study indicated that the steroidal saponin showed haemolytic effects in the in vitro assays and demonstrated antiinflammatory activity and gastroprotective property using in vivo models.  相似文献   

19.
Lu Y  Luo J  Huang X  Kong L 《Steroids》2009,74(1):95-628
Two novel C-22 steroidal lactone saponins, namely solanolactosides A, B (1, 2) and two new spirostanol glycosides, namely torvosides M, N (3, 4) were isolated from ethanol extract of aerial parts of Solanum torvum. Their structures were characterized as solanolide 6-O-[α-l-rhamnopyranosyl-(1 → 3)-O-β-d-quinovopyranoside] (1), solanolide 6-O-[β-d-xylopyranosyl-(1 → 3)-O-β-d-quinovopyranoside] (2), yamogenin 3-O-[β-d-glucopyranosyl-(1 → 6)-O-β-d-glucopyranoside] (3) and neochlorogenin 3-O-[β-d-glucopyranosyl-(1 → 6)-O-β-d-glucopyranoside] (4) on the basis of spectroscopic analysis. The cytotoxicities of the saponins (1-4) were evaluated in vitro against a panel of human cancer cell lines. Compounds 3 and 4 showed significant cytotoxic activity with the cell lines.  相似文献   

20.
Four flavone glycosides isolated from extracts of the leaves of Robinia pseudoacacia (Leguminosae) were characterised by spectroscopic and chemical methods as the 7-O-β-d-glucuronopyranosyl-(1 → 2)[α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranosides of acacetin (5,7-dihydroxy-4′-methoxyflavone), apigenin (5,7,4′-trihydroxyflavone), diosmetin (5,7,3′-trihydroxy-4′-methoxyflavone) and luteolin (5,7,3′,4′-tetrahydroxyflavone). Assignment of glycosidic 1H and 13C resonances in their NMR spectra was facilitated by 2JHC correlations detected using the H2BC (heteronuclear two-bond correlation) pulse sequence. Spectroscopic analysis of two known triglycosides, acacetin 7-O-β-d-glucopyranosyl-(1 → 2)[α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside (previously unrecorded from this species) and acacetin 7-O-β-d-xylopyranosyl-(1 → 2)[α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside (‘acacetin trioside’), enabled inconsistencies in the literature relating to these structures to be resolved. Comparison of the flavonoid chemistry of leaves and flowers of R. pseudoacacia using LC-UV and LC-MS showed that flavone 7-O-glycosides, particularly of acacetin, predominated in the former, whereas the latter comprised mainly flavonol 3,7-di-O-glycosides, including several examples new to this species. Tissue dependent differences in flavonoid chemistry were also evident from the glycosylation patterns of the compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号