首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Main Conclusion

Rice plants employ two strategies to cope with Cr toxicity: immobilizing Cr ions into cell walls to reduce its translocation and activating antioxidant defense to mitigate Cr-induced oxidative stress. The investigation aimed at understanding the physiological and proteomic responses of rice seedlings to hexavalent chromium (Cr6+) stress was conducted using two rice genotypes, which differ in Cr tolerance and accumulation. Cr toxicity (200 µM) heavily increased the accumulation of H2O2 and \({\text{O}}_{2}^{{ \cdot-}}\) , enhanced lipid peroxidation, decreased cell viability and consequently inhibited rice plant growth. Proteomic analyses suggest that the response of rice proteome to Cr stress is genotype- and Cr dosage-dependent and tissue specific. Sixty-four proteins, which show more than fourfold difference under either two Cr levels, have been successfully identified. They are involved in a range of cellular processes, including cell wall synthesis, energy production, primary metabolism, electron transport and detoxification. Two proteins related to cell wall structure, NAD-dependent epimerase/dehydratase and reversibly glycosylated polypeptide were greatly up-regulated by Cr stress. Their enhancements coupled with callose accumulation by Cr suggest that cell wall is an important barrier for rice plants to resist Cr stress. Some enzymes involved in antioxidant defense, such as ferredoxin-NADP reductase, NADP-isocitrate dehydrogenase, glyoxalase I (Gly I) and glutamine synthetase 1 (GS1) have also been identified in response to Cr stress. However, they were only detected in Cr-tolerant genotype, indicating the genotypic difference in the capacity of activating the defense system to fight against Cr-induced oxidative stress. Overall, two strategies in coping with Cr stress in rice plants can be hypothesized: (i) immobilizing Cr ions into cell walls to reduce its translocation and (ii) activating antioxidant defense to mitigate Cr-induced oxidative stress.  相似文献   

2.
A hydroponic experiment was conducted to study the ameliorative effects of separate or combined application of exogenous glutathione (GSH), selenium (Se) and zinc (Zn) upon 20 μM cadmium (Cd) plus 20 μM chromium (Cr) heavy metal stress (HM) in rice seedlings. The results showed that HM caused a marked reduction in seedling height, chlorophyll content (SPAD) and biomass, and activities of catalase (CAT) and ascorbate peroxidase (APX) in leaves and H+-ATPase in roots/leaves, but elevated superoxide dismutase (SOD) and guaiacol peroxidase (POD) activities in leaves with elevated malondialdehyde (MDA) accumulation both in leaves and roots over the control. The best mitigation effect was recorded in HM+GSH+Zn and HM+GSH (addition of GSH+Zn and GSH to HM solution), which greatly alleviated HM-induced growth inhibition and oxidative stress. Compared with HM alone, HM+GSH and HM+GSH+Zn markedly reduced Cr uptake and translocation but not affected Cd concentration; improved H+-ATPase activity and Fe, Zn, Mn uptake and translocation, and repressed MDA accumulation. Meanwhile exogenous GSH and GSH+Zn counteracted HM-induced response of antioxidant enzymes, via suppressing HM-induced dramatic increase of root/leaf SOD and leaf POD activities, and elevating stress-depressed leaf APX and leaf/root CAT activities.  相似文献   

3.
Glutathione-Mediated Alleviation of Chromium Toxicity in Rice Plants   总被引:1,自引:0,他引:1  
A hydroponic experiment was conducted to determine the possible effect of exogenous glutathione (GSH) in alleviating chromium (Cr) stress through examining plant growth, chlorophyll contents, antioxidant enzyme activity, and lipid peroxidation in rice seedlings exposed to Cr toxicity. The results showed that plant growth and chlorophyll content were dramatically reduced when rice plants were exposed to 100 μM Cr. Addition of GSH in the culture solution obviously alleviated the reduction of plant growth and chlorophyll content. The activities of some antioxidant enzymes, including superoxide dismutase, catalase (CAT) and glutathione reductase in leaves, and CAT and glutathione peroxidase in roots showed obvious increase under Cr stress. Addition of GSH reduced malondialdehyde accumulation and increased the activities of these antioxidant enzymes in both leaves and roots, suggesting that GSH may enhance antioxidant capacity in Cr-stressed plants. Furthermore, exogenous GSH caused significant decrease of Cr uptake and root-to-shoot transport in the Cr-stressed rice plants. It can be assumed that GSH is involved in Cr compartmentalization in root cells.  相似文献   

4.
Sulphur (S) assimilation leads to the formation of glutathione (GSH) and alleviation of cadmium (Cd) stress. GSH is synthesized from its immediate metabolite cysteine, which also serves as a metabolite for ethylene formation through S‐adenosyl methionine. To assess the role of ethylene in S‐induced alleviation of Cd stress on photosynthesis, the effects of S or ethephon (ethylene source) on GSH and ethylene were examined in mustard (Brassica juncea L. cv. Varuna). Sufficient‐S at 100 mg S kg?1 soil alleviated Cd‐induced photosynthetic inhibition more than excess‐S (200 mg S kg?1 soil) via ethylene by increased GSH. Under Cd stress, plants were less sensitive to ethylene, despite high ethylene evolution, and showed photosynthetic inhibition. Ethylene sensitivity of plants increased with ethephon or sufficient‐S, triggering the induction of an antioxidant system, and leading to increased photosynthesis even under Cd stress. The effects of ethephon and S under Cd stress were similar. The effects of S were reversed by ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG), suggesting that ethylene plays an important role in S‐induced alleviation of Cd stress on photosynthesis.  相似文献   

5.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   

6.
Excessive use of nitrogen (N) fertilizer has increased ammonium (NH4+) accumulation in many paddy soils to levels that reduce rice vegetative biomass and yield. Based on studies of NH4+ toxicity in rice (Oryza sativa, Nanjing 44) seedlings cultured in agar medium, we found that NH4+ concentrations above 0.75 mM inhibited the growth of rice and caused NH4+ accumulation in both shoots and roots. Use of excessive NH4+ also induced rhizosphere acidification and inhibited the absorption of K, Ca, Mg, Fe and Zn in rice seedlings. Under excessive NH4+ conditions, exogenous γ‐aminobutyric acid (GABA) treatment limited NH4+ accumulation in rice seedlings, reduced NH4+ toxicity symptoms and promoted plant growth. GABA addition also reduced rhizosphere acidification and alleviated the inhibition of Ca, Mg, Fe and Zn absorption caused by excessive NH4+. Furthermore, we found that the activity of glutamine synthetase/NADH‐glutamate synthase (GS; EC 6.3.1.2/NADH‐GOGAT; EC1.4.1.14) in root increased gradually as the NH4+ concentration increased. However, when the concentration of NH4+ is more than 3 mM, GABA treatment inhibited NH4+‐induced increases in GS/NADH‐GOGAT activity. The inhibition of ammonium assimilation may restore the elongation of seminal rice roots repressed by high NH4+. These results suggest that mitigation of ammonium accumulation and assimilation is essential for GABA‐dependent alleviation of ammonium toxicity in rice seedlings.  相似文献   

7.
Discharge of wastewater from electroplating and leather industries is a major concern for the environment due to the presence of toxic Cr6+ and other ions, such as sulfate, nitrate, phosphate, etc. This study evaluated the potential of Tradescantia pallida, a plant species known for its Cr bioaccumulation, for the simultaneous removal of Cr6+, SO42?, NO3?, and PO43?. The effect of different co-ions on Cr6+ removal by T. pallida was examined following the Plackett-Burman design of experiments carried out under batch hydroponics conditions. The results revealed a maximum removal of 84% Cr6+, 87% SO42?, 94% NO3? and 100% PO43? without any phytotoxic effect on the plant for an initial Cr6+ concentration in the range 5–20 mg L?1. SO42? and NO3? enhanced Cr uptake at a high initial Cr concentration (20 mg L?1), whereas PO43? did not affect Cr uptake both at high and low initial Cr concentrations. The Cr6+ removal kinetics in the presence of different ions was well described by the pseudo-second-order kinetic model which revealed that both biosorption and bioaccumulation of the metal played an important role in Cr6+ removal. Increase in the total carbohydrate and protein content of the plant following Cr6+ and co-ions exposure indicated a good tolerance of the plant toward Cr6+ toxicity. Furthermore, enhancement in the lipid peroxidation and catalase activity in T. pallida upon Cr6+ exposure revealed a maximum stress-induced condition in the plant. Overall, this study demonstrated a very good potential of the plant T. pallida for Cr6+ removal from wastewater even in the presence of co-ions.  相似文献   

8.
Selenium (Se) can play a protective role against heavy metal toxicity. This experiment aims to evaluate the effect of Se supplementation at different doses on the chicken brains. Oxidative stress was induced in the chicken brains by chromium(VI). A total of 105 Hyland brown male chickens were randomly divided into seven groups, including the control group, poisoned group [6%LD50 K2Cr2O7 body weight (B.W.)], and detoxification groups K2Cr2O7 (6%LD50) + Se (0.31, 0.63, 1.25, 2.50, and 5.00 Na2SeO3 mg/kg B.W.) orally in water for 42 days. The chickens were detected by the activities of mitochondrial membrane potential, 2′-benzoyloxycinnamaldehyde, superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and Ca2+-ATPase. Cr(VI) administration caused histopathological damage. In addition, changes in oxidative stress indicators were observed in the chicken’s brains. Se supplement increased the levels of GSH, mitochondrial membrane potential (MMP), and Ca2+-ATPase and reduced MDA activity in the detoxification groups. However, the high-dose Se supplementation groups of 2.50 and 5.00 mg/kg reduced the activities of GSH, MMP, and Ca2+-ATPase; increased the brain–body ratio; and increased SOD activity. In conclusion, Cr(VI) exposure caused oxidative stress. Se exerted a remission effect on toxic responses in the chicken brains. However, a high Se concentration was synergistic to the toxic effect of Cr(VI).  相似文献   

9.
Maize (Zea mays L.) seedlings grown in water culture in the presence of zinc and nickel ions were used with an effort to alleviate heavy metal toxicity by treating seeds with thidiazuron and kinetin (synthetic growth regulators with cytokinin-like activity). Heavy metals were shown to decrease germinability of seeds, suppress seedling growth, alter membrane permeability, and inhibit the activity of ascorbate peroxidase. Synthetic cytokinin-like agents alleviated deteriorative effects of heavy metals; the extent of alleviation depended on toxicant species and its concentration. The toxic effect of Zn2+ was effectively relieved by kinetin, whereas the Ni2+ toxicity was preferentially alleviated by thidiazuron.  相似文献   

10.
This study revealed heavy metal–induced physiological and biochemical alterations in crop seedlings by supplementing chelating agents in the nutrient solution. Hexavalent chromium (Cr+6) induces several toxic effects in hydroponically grown rice, wheat, and green gram seedlings. A noticeable decrease was observed in root length, shoot length, biomass content, and chlorophyll biosynthesis of the seedlings grown in the nutrient solutions supplemented with Cr+6 at 100 μM. The seedling growth was stimulated with supplement of chelating agents such as EDTA, DTPA, and EDDHA. An increase in proline content was noticed with the application of Cr+6 (100 μM) in nutrient solutions. Stimulated activities of antioxidant enzymes such as catalase and peroxidase were noticed with increasing concentrations of chromium. Cr bioaccumulation was significantly high in roots of seedlings treated with Cr+6 at 100 μM in nutrient solution. Shoot translocation of Cr as depicted by transportation index (Ti) values for different crops were enhanced with the application of chelating agents. The total accumulation rate (TAR) for Cr was enhanced with the supplementation of DTPA in rice and wheat, whereas the application of EDDHA was found effective for increasing the accumulation rate of Cr in green gram seedlings. This study demonstates the role of chelating agents in lessening the toxic effects of Cr+6. The chelating agents supplemented with Cr+6 in the culture medium enhanced the Cr bioavailability in plants.  相似文献   

11.
Chromium is a significant mutagen and carcinogen in environment. We compared the effects of tri- and hexavalent chromium on cytotoxicity and oxidative stress in yeast. Cell growth was inhibited by Cr3+ or Cr6+, and Cr6+ significantly increased the lethal rate compared with Cr3+. Both Cr3+ and Cr6+ can enter into the yeast cells. The percent of propidium iodide permeable cells treated with Cr3+ is almost five times as that treated with the same concentration of Cr6+. Levels of TBARS, O2 ?, and carbonyl protein were significantly increased in both Cr6+- and Cr3+-treated cells in a concentration- and time-dependent manner. Moreover, the accumulation of these stress markers in Cr6+-treated cells was over the Cr3+-treated ones. The decreased GSH level and increased activity of GPx were observed after 300 μM Cr6+-exposure compared with the untreated control, whereas there was no other change of GSH content in cells treated with Cr3+ even at very high concentration. Exposure to both Cr3+ and Cr6+ resulted in the decrease of activities of SOD and catalase. Furthermore, the effect of Cr6+ is stronger than that of Cr3+. Null mutation sensitivity assay demonstrated that the gsh1 mutant was sensitive to Cr6+ other than Cr3+, the apn1 mutant is more sensitive to Cr6+ than Cr3+, and the rad1 mutant is sensitive to both Cr6+ and Cr3+. Therefore, Cr3+ can be concluded to inhibit cell growth probably due to the damage of plasma membrane integrality in yeast. Although both tri- and hexavalent chromium can induce cytotoxicity and oxidative stress, the action mode of Cr3+ is different from that of Cr6+, and serious membrane damage caused by Cr3+ is not the direct consequence of the increase of lipid peroxidation.  相似文献   

12.
Due to its wide industrial use, chromium (Cr) is considered a serious environmental pollutant of aquatic bodies. In order to investigate the ecophysiological responses of water hyacinth [Eichhornia crassipes (Mart.) Solms] to Cr treatment, plants were exposed to 1 and 10 mM Cr2O3 (Cr3+) and K2Cr2O7 (Cr6+) concentrations for two or 4 days in a hydroponic system. Plants exposed to the higher concentration of Cr6+ for 4 days did not survive, whereas a 2 days treatment with 1 mM Cr3+ apparently stimulated growth. Analysis of Cr uptake indicated that most of the Cr accumulated in the roots, but some was also translocated and accumulated in the leaves. However, in plants exposed to Cr6+ (1 mM), a higher translocation of Cr from roots to shoots was observed. It is possible that the conversion from Cr6+ to Cr3+, which immobilizes Cr in roots, was not total due to the presence of Cr6+, causing deleterious effects on gas exchange, chlorophyll a fluorescence and photosynthetic pigment contents. Chlorophyll a was more sensitive to Cr than chlorophyll b. Cr3+ was shown to be less toxic than Cr6+ and, in some cases even increased photosynthesis and chlorophyll content. This result indicated that the Fv/F0 ratio was more effective than the Fv/Fm ratio in monitoring the development of stress by Cr6+. There was a linear relationship between qP and Fv/Fm. No statistical differences were observed in NPQ and chlorophyll a/b ratio, but there was a tendency to decrease these values with Cr exposure. This suggests that there were alterations in thylakoid stacking, which might explain the data obtained for gas exchanges and other chlorophyll a fluorescence parameters.  相似文献   

13.
The effect of exogenous application of 28-Homobrassinolide (HBR) on radish (Raphanus sativus L.) seedlings under zinc (Zn2+) stress on glutathione (GSH) production, consumption and changes in redox status was investigated. Zinc toxicity resulted in oxidative burst as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. These stress indices were significantly decreased by HBR supplementation. Under Zn2+ stress, GSH pool was decreased, while the contribution of oxidized glutathione (GSSG) to total GSH increased (GSSH/GSH ratio), this translated into significant reduction of GSH redox homeostasis. In addition, an increase of phytochelatins (PCs) was observed. In radish seedlings under Zn2+ stress, the activities of gamma-glutamylcysteine synthetase (γ-ECS), glutathione synthetase (GS), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and cysteine (Cys) levels increased but the activity of glutathione reductase (GR) decreased. However, application of HBR increased the GSH pool and maintained their redox ratio by increasing the enzyme activities of GSH biosynthesis (γ-ECS and GS) and GSH metabolism (GR, GPX and GST). The results of present study are novel in being the first to demonstrate that exogenous application of HBR modulates the GSH synthesis, metabolism and redox homeostasis to confer resistance against Zn2+ induced oxidative stress.  相似文献   

14.
Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca2+ and Mg2+ but not with K+ and Na+. The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H+ competition with Cr3+ bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH2+ in solution culture. Stability constants were obtained for the binding of Cr3+, CrOH2+, Ca2+, Mg2+ and H+ with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics.  相似文献   

15.
Cabbage (Brassica oleracea var. capitata cv. Snowball), known to be responsive to potentially toxic elements, was investigated for chromium (Cr3+) effect on iron metabolism and water relations. After 6 weeks growth in sand culture, a set of plants was supplied with 500 μM Cr3+ (CrCl3), superimposed over the full nutrient solution (control). Exposure to excess Cr3+ led to increased accumulation of Cr, more in roots than in leaves, and to the development of toxicity symptoms. In decreasing chlorophyll concentration and the activities of heme enzymes, catalase and peroxidase, the excess Cr3+ effect resembled Fe deficiency. These changes, associated with decrease in Fe accumulation in Cr3+ treated plants, indicate that by reducing absorption of Fe, Cr3+ impairs the Fe requiring steps of chlorophyll and heme biosynthesis. In spite of lower water saturation deficit, the leaves of Cr3+ treated plants showed decrease in leaf water potential, associated with increase in diffusive resistance and lowering of transpiration rate, indicating development of water stress. Enhanced accumulation of proline in Cr3+ treated plants also suggested this. Observed changes in water stress parameters in Cr3+ stressed plants indicate that plant exposure to excess supply of Cr3+ reduces the physiological availability of water.  相似文献   

16.
The complexation of reduced glutathione (GSH) in its free and Al(III)-bound species in acidic aqueous solutions was characterized by means of multi-analytical techniques: pH-potentiometry, multinuclear (1H, 13C and 27Al) and two-dimensional nuclear Overhauser enhancement NMR spectroscopy (1H, 1H-NOESY), electrospray mass spectroscopy (ESI-MS), and ab initio electronic structure calculations. The following results were found. In the 25 °C 0.1 M KCl and 37 °C 0.15 M NaCl ionic medium systems, Al3+ coordinates with the important biomolecule GSH through carboxylate groups to form various mononuclear 1:1 (AlHL, AlH2L and AlH−1L), 1:2 (AlL2) complexes, and dinuclear (Al2H5L2) species, where H4L+ denotes totally protonated GSH. Besides the monodentate complexes through carboxylate groups, the amino groups and the peptide bond imino and carbonyl groups may also be involved in binding with Al3+ in the bidentate and tridentate complexes. The present data reinforce that the glycine carboxylate group of GSH has a higher microscopic complex formation constant than γ-glutamyl carboxylate. Compared with simple amino acids, the tripeptide GSH displays a greater affinity for the Al3+ ion and thus may interfere with aluminum’s biological role more significantly.  相似文献   

17.
Chromium VI compounds have been shown to be carcinogenic in occupationally exposed humans, and to be genotoxic, mutagenic, and carcinogenic in a variety of experimental systems. In contrast, most chromium III compounds are relatively nontoxic, noncarcinogenic, and nonmutagenic. Reduction of Cr6+ leads to reactive intermediates, such as Cr5+, Cr4+, or other radical species. The molecular mechanism for the intracellular Cr6+ reduction has been the focus of recent studies, but the details are still not understood. Our study was initiated to compare the effect of Cr6+-hydroxyl radical formation and Cr6+-induced lipid peroxidation vs those of Cr3+. Electron spin responance measurements provide evidence for the formation of long-lived Cr5+ intermediates in the reduction of Cr6+ by glutathione reductase in the presence of NADPH and for the hydroxyl radical formation during the glutathione reductase catalyzed reduction of Cr6+. Hydrogen peroxide suppresses Cr5+ and enhances the formation of hydroxyl radical. Thus, Cr5+ intermediates catalyze generation of hydroxyl radicals from hydrogen peroxide through a Fenton-like reaction. Comparative effects of Cr6+ and Cr3+ on the development of lipid peroxidation were studied by using rat heart homogenate. Heart homogenate was incubated with different concentrations of Cr6+ compounds at 22°C for 60 min. Lipid peroxidation was determined as thiobarbituric acid reacting materiels (TBA-RM). The results confirm that Cr6+ induces lipid peroxidation in the rat heart homogenate. These observations might suggest a possible causative role of lipid peroxidation in Cr6+ toxicity. This enhancement of lipid peroxidation is modified by the addition of some metal chelators and antioxidants. Thus, strategies for combating Cr6+ toxicity should take into account the role of the hydroxy radicals, and hence, steps for blocking its chain propagation and preventing the formation of lipid peroxides.  相似文献   

18.
Abstract

In this paper, we describe a series of laboratory experiments which quantify the rate of Cr6+ reduction by Fe0. The main goal of these experiments was to determine the removal efficiency of Cr6+ by iron. The results indicate that Fe0 reduces Cr6+ to Cr3+ under alkaline and slightly acidic conditions. The removal efficiency rises with an increase of the initial concentration of Cr6+ (1 mg/L to 10 mg/L) when the quantity of Fe0 is stable. The removal efficiency increases as the quantity of Fe0 is raised when other conditions are constant. The removal efficiency would not be affected by other inorganic ions unless they were present at very high concentrations. When the initial concentration Cr6+ is 10mg/L and pH is 6.5–7.7, the final concentration of Cr6+ in effluent is less than 0.05 mg/L and the total Fe is less than 0.3 mg/L in effluent.  相似文献   

19.
This study examined the relationship between oxalic acid and Cr tolerance in an accumulating plant Leersia hexandra Swartz. The plants grown in hydroponics were exposed to Cr at 0, 5, 30, and 60 mg/L (without oxalate), and 0, 40, and 80 mg/L concentrations of Cr (with 70 mg/L oxalate or without oxalate). The results showed that more than 50% of Cr in shoots was found in HCl-extracted fraction (chromium oxalate) when the plants were exposed to Cr. Cr supply significantly increased oxalate concentration in shoots of L. hexandra (p < 0.05), but did not increase oxalate concentration in roots. Under 80 mg/L Cr stress, electrolyte leakages from roots and shoots with oxalate treatment were both significantly lower than those without oxalate treatment (p < 0.05), indicating exogenous oxalate supply alleviated Cr-induced membrane damage. Oxalate added to growth solution ameliorated reduction of biomass and inhibition of root growth induced by Cr, which demonstrated that application of oxalate helped L. hexandra tolerate Cr stress. However, oxalate supply did not affect the Cr concentrations both in roots and shoots of L. hexandra. These results suggest that oxalic acid may act as an important chelator and takes part in detoxifying chromium in internal process of L. hexandra.  相似文献   

20.
Summary To explain the mechanism of iron toxicity, greenhouse and growth chamber (14CO2 atmosphere) experiments were carried out. In pot experiments (with a typical iron-toxic soil and a fertile clay) we studied the effect of N, P, K and Ca+Mg fertilization (alone or in combination) on dehydrogenase activity, Fe++ formation, and the populations of iron-reducing bacteria in the rhizosphere of rice IR22 and IR42. Fe uptake by the plants was measured at regular intervals. Dehydrogenase activity, the number of N2-fixing iron-reducing bacteria, and the formation and uptake of Fe++ decreased with increased supply of K, Ca, and Mg. This effect was clearer with IR22 (susceptible to iron toxicity) than with IR42 (releatively tolerant). Increased exudation and Fe uptake by IR36 at low nutrient and high Fe supply were recorded in a growth chamber experiment. Nutritional conditions, exudation rate (a measure of metabolic root leakage), the iron-reducing activity of the rhizosphere, and Fe++ uptake by wetland rice appear to be clearly related. Iron toxicity is considered a physiological disorder caused by multiple nutritional soil stress rather than by a low pH and high Fe supply per sé.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号