首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
李乐农  郭宝江 《植物学报》1998,15(Z1):72-76
 本文评迷了螺旋藻的培养及其分子生物学研究的新进展。认为:螺旋藻的生物学特性及其培养得到了广泛的研究;其工厂化生产日趋成熟;封闭式生物反应器的出现将加快螺旋藻产业的发展;螺旋藻的生物活性物质的功能越来越受到人们的重视,其结构与功能的关系进一步深入;分子生物学技术在螺旋藻上的应用将促进藻类学的研究和藻类资源的开发。  相似文献   

2.
富硒螺旋藻培养技术研究   总被引:15,自引:1,他引:14  
采用富硒技术对印项螺旋藻培养进行强化,对硒(IV)浓度和亚硫酸盐的影响,以及硒的生物富集及其对藻细胞分子官能团结构的影响等进行了较为详细的研究,并对相关的可能机理进行了讨论。研究发现,硒对印顶螺旋藻生长具有刺激或抑制的双重作用。在0.02mg/L-411.00mg/L浓度范围内,硒不仅可以加快印顶螺旋藻的生长,而且还可以提高其生物量;同时,钝顶螺旋藻对硒的事集随着硒浓度的增加而增加,较为缓慢的生长利于钝顶螺旋藻对硒的富集。研究还证实,NaSO3会减轻高浓度Na2SeO3对印顶螺旋藻生长的毒性,富硒培养不会对藻细胞分子官能团结构产生损害。实验得出钝顶螺旋藻富硒培养较佳的硒处理浓度在10mg/L-40mg/L。  相似文献   

3.
本研究对螺旋藻产品的免疫调节保健功能进行了检验和评价。小鼠实验结果显示 ,饲喂螺旋藻可以增强其体液免疫、细胞免疫、自然杀伤细胞和巨噬细胞等免疫系统的重要组成部分的活力。研究表明 ,螺旋藻能协调地改善免疫系统的功能 ,它不愧是优秀的保健食品。  相似文献   

4.
本研究对螺旋藻产品的免疫调节保健功能进行了检验和评价。小鼠实验结果显示,饲喂螺旋藻可以增强其体液免疫、细胞免疫、自然杀伤细胞和巨噬细胞等免疫系统的重要组成分部的活力。研究表明,螺旋藻能协调地改善免疫系统的功能,这不愧是优秀的保健食品。  相似文献   

5.
Li SS  Yong JR  Qi YL  Zhang Y  Zhao L  Xia SL  Li D  Wang HL  Bao QY  Li PZ 《遗传》2011,33(10):1134-1140
文章利用绿色荧光蛋白基因作为报告基因,研究2个螺旋藻耐盐相关基因启动子区域的功能。通过启动子预测软件预测螺旋藻耐盐相关基因5′端非翻译区的启动子结构,用Primer3.0程序在线设计引物,以pMD18-T载体和pUC18载体克隆螺旋藻启动子序列、gfp和卡那霉素抗性基因,将螺旋藻启动子-GFP基因-卡那霉素抗性基因(pro-gfp-kanr)三联DNA片段克隆至pKW1188载体,并将该重组质粒pKW1188::pro::gfp::kanr转化至受体菌集胞藻6803,激光共聚焦显微镜观察不同盐浓度培养条件下、不同时间段集胞藻表达GFP的情况。结果显示,通过不同盐浓度和不同时间的诱导,2个螺旋藻启动子在0.4~0.6 mol/L NaCl条件下,培养6~8 h表达的绿色荧光蛋白最多。文章成功构建了以绿色荧光蛋白为报告基因、卡那霉素抗性基因为选择标记、集胞藻6803作为外源基因表达受体,进行螺旋藻耐盐相关基因功能研究的平台;另外,从螺旋藻启动子能被盐诱导大量表达GFP的结果看,与启动子相关的螺旋藻基因很可能与螺旋藻的耐盐性相关。  相似文献   

6.
高浓度CO_2对极大螺旋藻生长和光合作用的影响   总被引:6,自引:4,他引:2  
以极大螺旋藻作为实验材料 ,研究了高CO2 浓度对极大螺旋藻的生长和光合作用效应 ,结果表明在高光强下 (40 0 μmolm- 2 s- 1 ) ,高浓度CO2 对其生长和光合作用有明显的影响 ,高浓度CO2 培养下 ,螺旋藻的比生长速率是低浓度CO2 培养的 1 2倍 ;而在低光强下 ,高浓度CO2 对其生长和光合作用无明显影响。两种不同CO2 浓度和光强下培养的极大螺旋藻 ,在不同的生长时期 ,分别测定其P -I曲线 ,结果表明低光强下培养的极大螺旋藻 ,在 5d、8d、1 1d ,两者的Ik、α值均无显著差异 ,Pmax在第 5d、1 1d差异不显著 ,但在第 8d有显著差异。而在高光强培养条件下 ,第 8、1 1d通高浓度CO2 培养的极大螺旋藻 ,其Pmax、α值明显大于通低浓度CO2 培养的极大螺旋藻 ,但两者在第 5d无明显差异。  相似文献   

7.
高浓度CO2对极大螺旋藻生长和光合作用的影响   总被引:7,自引:3,他引:4  
以极大螺旋藻作为实验材料,研究了高CO2浓度对极大螺旋藻的生长和光合作用效应,结果表明在高光强下(400μmolm^-2s^-1),高浓度CO2对其生长和光合作用有明显的影响。高浓度CO2培养下,辈放荡中的比生长速率是低浓度CO2培养的1.2倍;而在低光强下,高浓度CO2对其生长和光合作用无明显影响。两种不同CO2浓度和光强下培养的极大螺旋藻,在不同的生长时期,分别测定其P-I曲线,结果表明,低光强下培养的极大螺旋藻,在5d、8d、11d,两者的Ik、α值均无显著差异,Pmax在第5d、11d差异不显著,但在第8d有显著差异。而在高光强培养条件下,第8、11d通高浓度CO2培养的极大螺旋藻,其Pmax、α值明显大于通低浓度CO2培养的极大螺旋藻,但两者在第5d无明显差异。  相似文献   

8.
冠突散囊菌是茯砖茶发酵中的优势菌,其数量和质量直接关系到茯砖茶的品质,国内外学者对其进行了比较全面的研究。本文中,笔者综述了冠突散囊菌的分离鉴定、分子生物学、培养、发花过程、保健功能及其应用等几个方面,并对其研究与应用前景进行了展望。  相似文献   

9.
蓝藻—螺旋藻(Spirulina)作为大规模工业化培养的对象,以其高的蛋白质含量和合理的氨基酸组成,极大地吸引了国内外生物学工作者的注意,他们对原产于非洲的钝顶螺旋藻(S.platensis)或墨西哥的极大螺旋藻(S.maxima)进行了广泛的研究3-6。笔者在我国广州珠江河畔一个小池塘里发现采集了一种螺旋藻——大螺旋藻(Spirulina major)1,2,进行了分离和单种培养。    相似文献   

10.
张峰  向文洲  萧邶  陈平原 《微生物学报》2012,52(11):1378-1384
[目的]建立耦合CO2减排的微藻培养技术,在减排CO2的同时,有效降低微藻产业化生产的成本.[方法]以两种微藻所具有的pH快速漂移与高碱适应特性为原理,通过CO2防逸罩简易装备的设计和构建,建立二氧化碳减排技术.[结果]将该技术应用于微藻培养,在嗜碱绿球藻MC-1的CO2减排小试培养中,CO2防逸罩的安装使得通入培养物后全部逸出的CO2被碱性藻液完全吸收,在海水钝顶螺旋藻新藻株(HS331)的工厂化中试培养中,其平均产率达9.54g/( m2· d1),碳源成本降低了57%,并有效避免了碳酸根离子导致的海水钙镁离子沉淀的产生 ;将该技术进一步应用到螺旋藻产业化培养,在保证获得高质量产品的同时,其年产量提高了20%,每年NaHCO3用量减少了66%,碳源成本减少了58%,年减排CO2量约45吨.[结论]本研究实现了CO2减排技术在螺旋藻产业化培养中的应用,有效降低了螺旋藻生产成本,为建立产业化的C02减排新技术奠定了重要的理论与技术基础.  相似文献   

11.
高浓度CO_2培养条件下极大螺旋藻光抑制研究   总被引:1,自引:0,他引:1  
以极大螺旋藻作为实验材料 ,研究了不同 CO2 浓度培养对螺旋藻光抑制和恢复的影响 ,结果表明由光抑制导致的光合速率下降 ,高浓度 CO2 比低浓度 CO2 培养程度小 ,在高浓度 CO2 条件下培养的极大螺旋藻 ,虽然在强光下也表现出光抑制 ,但与低浓度 CO2 相比 ,光合速率下降得较慢。这种现象在强光与弱光培养均存在 ,但强光培养时更明显。光抑制后的恢复实验表明 ,不同 CO2 浓度培养的极大螺旋藻 ,光系统 光化学活性 (Fv/Fm)在弱光下恢复较好 ,高光强、高浓度 CO2 培养的藻 ,恢复速度稍快 ;而在黑暗中 ,几乎没有恢复 ;在弱光和含氯霉素的条件下 Fv/Fm均下降。由此可见 ,高 CO2 浓度可减轻极大螺旋藻的光抑制 ,但对其光抑制后的恢复影响不大。  相似文献   

12.
高浓度CO2培养条件下极大螺旋藻光抑制研究   总被引:4,自引:2,他引:2  
以极大螺旋藻作为实验材料,研究了不同CO2浓度培养对螺旋藻光抑制和恢复的影响,结果表明由光抑制导致的光合速率下降,高浓度CO2比低浓度CO2培养程度小,在高浓度CO2条件下培养的极大螺旋藻,虽然在强光下也表现出光抑制,但与低浓度CO2相比,光合速率下降得较慢。这种现象在强光与弱光培养均存在,但强光培养时更明显。光抑制后的恢复实验表明,不同CO2浓度培养的极大螺旋藻,光系统光化学活性(Fv/Fm)在弱光下恢复较好,高光强、高浓度CO2培养的藻,恢复速度稍快;而在黑暗中,几乎没有恢复;在弱光和含氯霉素的条件下Fv/Fm均下降。由此可见,高CO2浓度可减轻极大螺旋藻的光抑制,但对其光抑制后的恢复影响不大。    相似文献   

13.
培养条件对螺旋藻生长和藻胆蛋白含量的影响   总被引:5,自引:0,他引:5  
研究了不同质量浓度尿素代替硝酸钠作氮源和不同氯化钠质量浓度改变渗透压对螺旋藻的生长和藻胆蛋白含量的影响。结果发现适宜质量浓度尿素 ( 0 .1g·L-1)培养可加快螺旋藻生长 ,增加藻胆蛋白含量 ;质量浓度高于 0 .2g·L-1其生长受到抑制 ;而质量浓度过高 (≥ 0 .4g/L)时培养几天螺旋藻即断裂并逐渐死亡。培养基中不加氯化钠或质量浓度为 2 0g·L-1时培养 ,生长速度均与对照相当 ,但藻胆蛋白含量比对照要高 ;质量浓度为 40g·L-1~ 6 0g·L-1时培养 ,其生长明显变慢 ,且氯化钠浓度越高生长越慢 ;当质量浓度过高 (≥ 6 0g·L-1)时培养 3d ,螺旋藻细胞即破裂死亡。  相似文献   

14.
研究了钝顶螺旋藻和极大螺旋藻在含CdCl2水体中的生长状况与摄Cd能力.结果表明:两种螺旋藻皆对CdCl2有较强的耐受能力,但是有不同的摄Cd行为.当CdCl2浓度为6~24mg.L-1,培养96h时,两种螺旋藻对Cd的摄取作用主要表现为藻细胞外的表面吸附;培养10d时,钝顶螺旋藻的胞内Cd含量依然甚微,而极大螺旋藻对Cd的细胞内吸附量却明显增加,24mg.L-1CdCl2处理的极大螺旋藻胞内的Cd吸附量为12mg.L-1CdCl2处理的11.6倍,且略超过细胞表面吸附量.表明在高浓度Cd的长时间胁迫下,两种螺旋藻的摄Cd行为和对Cd的耐受机制具有明显差异,其中钝顶螺旋藻为胞外机制,而极大螺旋藻却为胞内、胞外混合机制,且以胞内机制为主.  相似文献   

15.
螺旋藻及其水提物对肠道菌群体外生长的影响   总被引:2,自引:0,他引:2  
体外观察螺旋藻及其水提物对肠道菌群生长的影响。结果表明 ,螺旋藻及其水提物对双歧杆菌和乳杆菌和生长具有显著的促进作用 (培养 48h,P<0 .0 0 1) ,对肠道其他菌亦有不同程度的促进作用 ,而对大肠埃希菌的促生长作用不显著 (P>0 .0 5 )。  相似文献   

16.
巨大螺旋藻光合放氧和超微结构的研究   总被引:4,自引:0,他引:4  
选用常温下培养的巨大螺旋藻为材料,对其光合放氧与超微结构进行了观察和研究。结果表明:1)巨大螺旋藻具有较强的放氧能力;2)巨大螺旋藻细胞内存在有含量极丰富的类囊体,气泡,藻胆体及羧化体等特写结构与其光合放氧特性相适应;3)类囊体膜片层在细胞的部分区域已趋于重叠,且封闭成一独立系统存在,具类似真核生物叶绿体的结构;4)从进化角度来看,巨大螺旋藻类囊体膜存在的方式可以作为叶绿体系统演化的证据之一,即真  相似文献   

17.
螺旋藻的生物化学及其基因工程研究   总被引:7,自引:0,他引:7  
螺旋藻的生物化学及其基因工程研究李乐农郭宝江(华南师范大学生物技术研究所,广州510631)关键词螺旋藻基因工程生物活性物质螺旋藻是具有开发前途的绿色食品新资源,因其富含蛋白质、多糖、不饱和脂肪酸等多种营养成分,被认为是人类未来最理想的食品。本世纪6...  相似文献   

18.
肠道微生物与宿主的健康状况息息相关,已成为当今的热点研究领域。随着分子生物学技术的快速发展,高通量测序技术、实时荧光定量PCR技术和PCR-DGGE技术等凭借其高灵敏度、高通量、无需体外培养等优势,为研究微生物结构和功能基因组提供了新方法,并在肠道菌群的研究中应用广泛。本文对这三种分子生物学技术在肠道微生物研究中的应用进行了综述,总结了这三种技术在肠道微生物研究中的应用范围和优缺点,并展望了其在肠道微生物研究中的广阔应用前景。  相似文献   

19.
二十一世纪的理想食品—螺旋藻   总被引:22,自引:0,他引:22  
本文全面综述了螺旋藻的营养价值,保健功效,药用价值及其在水产养殖方面的应用,并展望了其开发前景。  相似文献   

20.
螺旋藻多糖的生物活性研究概况   总被引:3,自引:0,他引:3  
尤珊  郑必胜  郭祀远 《生物技术》2002,12(6):F003-F003,F002
近两年对螺旋藻 (Spirulina)的研究多集中在螺旋藻多糖上 ,根据所在位置不同而存在胞内多糖、囊鞘多糖和释放多糖。国内研究多集中在胞内多糖上 ,而国外对蓝绿藻的多糖研究集中在囊鞘多糖和释放多糖上。螺旋藻多糖因其参加了细胞的多种生命现象的调节作用 ,具有抗肿瘤、抗辐射、DNA修复及免疫增强作用 ,成为国内外海洋药物研究的重点。本文综述国内外螺旋藻多糖生物活性的研究进展以及研究方法。1 螺旋藻多糖的免疫调节和延缓衰老功能左绍远等[1 ] 实验发现 ,小鼠ipPSP1 0 0mg kg ,连续 77d ,可明显增加脾重 ;显著促…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号