首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
Renewable energy (RE) technologies are looked upon favorably to provide for future energy demands and reduce greenhouse gas (GHG) emissions. However, the installation of these technologies requires large quantities of finite material resources. We apply life cycle assessment to 100 years of electricity generation from three stand‐alone RE technologies—solar photovoltaics, run‐of‐river hydro, and wind—to evaluate environmental burden profiles against baseline electricity generation from fossil fuels. We then devised scenarios to incorporate circular economy (CE) improvements targeting hotspots in systems’ life cycle, specifically (1) improved recycling rates for raw materials and (ii) the application of eco‐design. Hydro presented the lowest environmental burdens per kilowatt‐hour of electricity generation compared with other RE technologies, owing to its higher efficiency and longer life spans for main components. Distinct results were observed in the environmental performance of each system based on the consideration of improved recycling rates and eco‐design. CE measures produced similar modest savings in already low GHG emissions burdens for each technology, while eco‐design specifically had the potential to provide significant savings in abiotic resource depletion. Further research to explore the full potential of CE measures for RE technologies will curtail the resource intensity of RE technologies required to mitigate climate change.  相似文献   

2.
Extended producer responsibility (EPR) legislation in the United States, which currently only exists on the state level, now includes three mattress EPR acts, which intend to shift the financial and operational burden of mattress end‐of‐life (EOL) management away from local and state government. It is important to keep in mind, however, that the original objective behind EPR is to reduce the environmental life cycle impacts of products. This article therefore quantifies the greenhouse gas (GHG) savings potential of mattress and boxspring recycling and reuse in the United States and also discusses labor implications and mattress design issues. We find that all three acts are unlikely to generate redesign incentives, but are expected to dramatically increase mattress collection and recycling. The collection and recycling of all 35 million EOL mattress and boxspring units estimated to reach the end of their lives in the United States every year would generate in the order of 10,000 jobs and GHG savings between 1 and 1.5 million metric tonnes.  相似文献   

3.
A dissolved air flotation (DAF) system upgrade was proposed for an urban paper mill to recycle effluent. To understand the influence of operating variables on the environmental impacts of greenhouse gas (GHG) emissions and water consumption, a dynamic supply chain model was linked with life cycle assessment (LCA) to produce an environmental inventory. Water is a critical natural resource, and understanding the environmental impacts of recycling water is paramount in continued development of sustainable supply chains involving water. The methodology used in this study bridged the gap between detailed process models and static LCA modeling so that operating variables beyond discrete scenario analysis could be investigated without creating unnecessarily complex models. The model performed well in evaluating environmental impacts. It was found that there was no single optimum operating regime for all environmental impacts. For a mill discharging 80 cubic meters of effluent per hour (m3/hour), GHGs could be minimized with a DAF capacity of 17.5 m3/hour, while water consumption could be minimized with a DAF capacity of 25 m3/hour, which allowed insight into where environmental trade‐offs would occur. The study shows that more complexity can be achieved in supply chain modeling without requiring a full technical model. It also illustrates the need to consider multiple environmental impacts and highlights the trade‐off of GHG emissions with water consumption in water recycling. The supply chain model used in this water treatment case study was able to identify the environmental trade‐offs from the operating variables selected.  相似文献   

4.
Short rotation coppices (SRC) are considered prime candidates for biomass production, yielding good‐quality feedstock that is easy to harvest. Besides technical, social and economical aspects, environmental issues are important to be taken into account when developing SRC. Here, we evaluated the environmental impacts of delivering 1 GJ of heat from eucalyptus SRC using life cycle assessment (LCA), based on management scenarios involving different rotations lengths, fertilizer input rates, stem densities and harvest methods. Compared to equivalent fossil chains, all eucalyptus scenarios achieved savings of fossil energy and greenhouse gas (GHG) emissions in the 80–90% range, and had generally lower impacts, except for eutrophication. The 3 year rotation scenario was the most energy and GHG‐intensive, whereas manual felling for the longer rotations resulted in twofold larger photochemical ozone impacts compared to the other scenarios. Transportation of wood chips and fertilization were the top two contributors to the impacts, the latter being more important with the shorter rotation lengths due to the evergreen character of eucalyptus. The possibility of including ecosystem carbon dynamics was also investigated, by translating the temporary sequestration of atmospheric CO2 in the above and belowground biomass of eucalyptus as CO2 savings using various published equivalence factors. This offset the life cycle GHG emissions of heat provision from eucalyptus SRC by 70–400%.  相似文献   

5.

Purpose

The crude palm oil (CPO) extraction is normally done by a wet extraction process, and wastewater treatment of the wet process emits high levels of greenhouse gases (GHGs). A dry process extracts mixed palm oil (MPO) from palm fruit without using water and has no GHG emissions from wastewater treatment. This work is aimed at determining the GHG emissions of a dry process and at evaluating GHG savings on changing from wet to dry process, including land use change (LUC) effects.

Methods

Life cycle assessment from cradle to gate was used. The raw material is palm fruits. The dry process includes primary production, oil room, and utilities. MPO is the main product, while palm cake and fine palm residue are co-products sold for animal feed. Case studies were undertaken without and with carbon stocks of firewood and of nitrogen recycling at plantations from fronds. Allocations by mass, economic, and heating values were conducted. The trading of GHG emissions from co-products to GHG emissions from animal feed was assessed. The GHG emissions or savings from direct LUC (dLUC) and from indirect LUC (iLUC) effects and for the change from wet to dry process were determined.

Results and discussion

Palm fruit and firewood were the major GHG emission sources. Nitrogen recycling on plantations from fronds significantly affects the GHG emissions. With the carbon stocks, the GHG emissions allocated by energy value were 550 kg CO2 eq/t MPO. The GHG emissions were affected by ?3 to 37% for the change from wet to dry process. When the plantation area was increased by 1 ha and the palm oil extraction was changed from wet to dry process, and the change included dLUC and iLUC, the GHG savings ranged from ?0.94 to 5.08 t CO2 eq/ha year. The iLUC was the main GHG emission source. The GHG saving mostly originated from the change of extraction process and from the dLUC effect. Based on the potential use of biodiesel production from oil palm, during 2015–2036 in Thailand, when the extraction process was changed and dLUC and iLUC effects were included, the saving in GHG emissions was estimated to range from ?35,454 to 274,774 t CO2 eq/year.

Conclusions

The change of palm oil extraction process and the LUC effects could minimize the GHG emissions from the palm oil industry. This advantage encourages developing policies that support the dry extraction process and contribute to sustainable developments in palm oil production.
  相似文献   

6.
Over the past two decades, the interest to decrease the emission levels of greenhouse gases (GHGs) has increased. The livestock sector has been put under continuous supervision and regulation because it is an important source of GHG emissions. In 2012, it was estimated that 3.46 Gton CO2-eq was released from this sector, methane (CH4) being the gas with the highest contribution (43 %), followed by nitrous oxide (21 %). In order to determine real emissions, it is necessary to use precise and reproducible measuring methods which can be complex and expensive. The challenges in these methods are focused on achieving an accurate assessment and monitoring of gas emissions, developing monitoring systems for the continuous measurement and implementation of methodologies for their validation in field in order to understand the complex nature of environmental variables affecting gas production. Different techniques for the measurement of CH4 and nitrous oxide (N2O) emissions are reviewed and discussed in this research. The passive flux sampling to measure emissions of these GHGs has been identified as an interesting alternative technique because it is practical, low cost and robust. This kind of sampler is highly adequate to measure emissions of N2O and CH4 originating from some sources of the livestock sector, but at this moment, no prototypes are commercially available and thus more research is necessary in this field.  相似文献   

7.
The use of packaging materials results in greenhouse gas (GHG) emissions through production and transport of materials and packaging and through end-of-life management. In this article, we investigate the potential reduction of GHGs that are related to packaging. For this purpose, we use the dynamic MATTER-MARKAL model in which the western European energy and materials system is modeled. The results show that GHGs related to packaging can technically be reduced by up to 58% in the period 1995–2030. Current European packaging directives will result in a 10% emission reduction. Cost-effective improved material management 1 that includes lightweighting, reusable packages, material recycling, and related strategies can contribute a 22% GHG emission reduction. An additional 13% reduction becomes cost effective when a GHG emission penalty of 100 euros per metric ton 2 (EUR/ton) is introduced (1 EUR 0.9 USD). Generally speaking, improved material management dominates the gains that can be achieved without a penalty or with low GHG emission penalties (up to 100 EUR/ton CO2 equivalent). By contrast, the reduction of emissions in materials production and waste handling dominate when high GHG penalties are applied (between 100 and 500 EUR/ton CO2 equivalent). Given the significant technical potential and the low costs, more attention should be paid to material efficiency improvement in GHG emission reduction strategies.  相似文献   

8.
Food action plans in many global cities articulate interest in multiple objectives including reducing in‐ and trans‐boundary environmental impacts (water, land, greenhouse gas (GHG)). However, there exist few standardized analytical tools to compare food system characteristics and actions across cities and countries to assess trade‐offs between multiple objectives (i.e., health, equity) with environmental outcomes. This paper demonstrates a streamlined model applied for analysis of four cities with varying characteristics across the United States and India, to quantify system‐wide water, energy/GHG, and land impacts associated with multiple food system actions to address health, equity, and environment. Baseline diet analysis finds key differences between countries in terms of meat consumption (Delhi 4; Pondicherry 16; United States 59, kg/capita/year), and environmental impact of processing of the average diet (21%, 19%, <1%, <1% of community‐wide GHG‐emissions for New York, Minneapolis, Delhi, and Pondicherry). Analysis of supply chains finds city average distance (food‐miles) varies (Delhi 420; Pondicherry 200; United States average 1,640 km/t‐food) and the sensitivity of GHG emissions of food demand to spatial variability of energy intensity of irrigation is greater in Indian than US cities. Analysis also finds greater pre‐consumer waste in India versus larger post‐consumer accumulations in the United States. Despite these differences in food system characteristics, food waste management and diet change consistently emerge as key strategies. Among diet scenarios, all vegetarian diets are not found equal in terms of environmental benefit, with the US Government's recommended vegetarian diet resulting in less benefit than other more focused targeted diet changes.  相似文献   

9.
Biorefining agro‐industrial biomass residues for bioenergy production represents an opportunity for both sustainable energy supply and greenhouse gas (GHG) emissions mitigation. Yet, is bioenergy the most sustainable use for these residues? To assess the importance of the alternative use of these residues, a consequential life cycle assessment (LCA) of 32 energy‐focused biorefinery scenarios was performed based on eight selected agro‐industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land‐use changes (iLUC) induced by the competing feed/food sector, a deterministic iLUC model, addressing global impacts, was developed. A dedicated biochemical model was developed to establish detailed mass, energy, and substance balances for each biomass conversion pathway, as input to the LCA. The results demonstrated that, even for residual biomass, environmental savings from fossil fuel displacement can be completely outbalanced by iLUC, depending on the feed value of the biomass residue. This was the case of industrial residues (e.g. whey and beet molasses) in most of the scenarios assessed. Overall, the GHGs from iLUC impacts were quantified to 4.1 t CO2‐eq.ha?1demanded yr?1 corresponding to 1.2–1.4 t CO2‐eq. t?1 dry biomass diverted from feed to energy market. Only, bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat and power production was the best performing pathway, in a short‐term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro‐industrial residues cannot be considered burden‐free simply because they are a residual biomass and careful accounting of alternative utilization is a prerequisite to assess the sustainability of a given use. In this endeavor, the iLUC factors and biochemical model proposed herein can be used as templates and directly applied to any bioenergy consequential study involving demand for arable land.  相似文献   

10.

Purpose

Informal recycling is one of the most significant activities within waste management systems in low-income countries. The main aspect of a number of recently implemented waste management systems has been to organise the informal recycling sector. The implementation of formalisation is expected to eliminate social problems related to the informal sector, but this has not been precisely measured and evaluated. A lack of methodology to assess social impacts persists, as does the comparison of different formalisation approaches. The goal of this work is to develop a methodological procedure for assessing the contribution of formalised recycling systems in low-income countries in terms of social impacts, in comparison with informal systems.

Methods

Some existing social assessment approaches were evaluated by a review of literature. This investigation focuses on the development of the social life cycle assessment approach, the analysed social aspects, proposed indicators and characterisation models within this framework.

Results and discussion

This study proposes an approach for the social assessment of recycling systems based on formalisation approaches in low-income countries oriented towards the social life cycle assessment methodology (sLCA). The approach developed considers 3 social impact categories, 9 social subcategories and 26 semi-quantitative indicators for the assessment of the social impacts on formalised recyclers. It includes a characterisation procedure that takes into consideration the application of a score system and the calculation of average scores at both the indicator and subcategory levels.

Conclusions

This research shows that it would be feasible to apply a sLCA-based methodology to evaluate recycling systems based on formalisation of the informal sector. The impact categories and subcategories identified represent the social problems of informal recyclers. The 26 semi-quantitative indicators and the proposed characterisation approach attempt to measure the social impacts that currently are only qualitatively assumed. The applicability and validation of the indicators and characterisation procedure will be determined by further research. The methodology developed will be tested using data from three recycling systems in Peruvian cities.  相似文献   

11.
Thermal insulation is a strategic product for reducing energy consumption and related greenhouse gas (GHG) emissions from the building sector. This study examines from a life cycle perspective the changes in GHG emissions resulting from the use of two rigid thermal insulation products manufactured and installed from 1971 to 2025. GHG emissions related to insulation production and fugitive releases of blowing agents are modeled and compared with GHG savings from reduced heating loads in North America, Europe, and Asia. Implementation of alternative blowing agents has greatly improved the carbon dioxide 100‐year equivalent (CO2‐eq) emission performance of thermal insulation. The net average CO2‐eq savings to emissions ratio for current extruded polystyrene (XPS) and polyisocyanurate (PIR) insulation studied was 48:1, with a broad range from 3 to 1,800. Older insulation products manufactured with chlorofluorocarbons (CFCs) can result in net cumulative GHG emissions. Reduction of CO2‐eq emissions from buildings is governed by complex interactions between insulation thickness and placement, climate, fuel type, and heating system efficiencies. A series of charts mapping both emissions payback and net savings demonstrate the interactions between these factors and provide a basis for specific policy recommendations to guide effective insulation investments and placement.  相似文献   

12.
Purpose

Bio-based recycling systems and agricultural production using recycled materials are often evaluated separately. This study performs an environmental and socio-economic life cycle assessment (LCA) of a food waste treatment and spinach farming system in Japan. The environmental and economic tradeoffs of introducing a recycling system and the net environmental benefit of the substitution of market fertilizer considering operation changes are also examined.

Methods

Three scenarios were developed and compared. In the conventional (CV) scenario, food waste is collected, incinerated, and disposed of in landfill, and the farmer uses market organic fertilizer. The on-site composting (OC) scenario processes food waste using an on-site garbage disposer and transports compost to a nearby spinach farmer. Food waste in the centralized composting (CC) scenario is transported to a centralized composting facility and resultant compost is sent to the farm. Primary data were obtained from field experiments and interviews. Non-greenhouse gas (GHG) emissions from the field and nitrogen leaching to water systems were simulated using the denitrification–decomposition (DNDC) model.

The environmental LCA targeted climate change, eutrophication, and waste landfill. An input–output analysis estimated socio-economic indicators, namely gross added value and employment inducement effect.

Results and discussion

The scenario with the lowest impact is the CC scenario. Climate change and eutrophication impacts are highest in the OC scenario and waste landfill impacts are most significant in the CV scenario. The weighted impact by LIME2 can be reduced by 47% in the CC scenario and 17% in the OC scenario due to the recycling of food waste instead of dumping in the landfill. The difference in socio-economic indicators between the scenarios was relatively small, although the CV scenario encouraged more employment. The substitution effect of composting, as well as the environmental impact reduction of replacing market organic fertilizer with compost, will result in 28.7% of the avoided impacts in GHG emissions.

Conclusions

Both composting scenarios are feasible from an environmental and socio-economic perspective when compared with conventional organic production, although there is a tradeoff between waste landfill and GHG emissions for the on-site composting system. However, the OC scenario needs to save electricity to improve its environmental competitiveness with the CV scenario. When considering the substitution effect of composting, it is recommended to take into account that agricultural operation also changes.

  相似文献   

13.

Purpose

The aim of this paper is to evaluate assumptions and data used in calculations  related to palm oil produced for biodiesel production relative to the European Renewable Energy Directive (EU-RED). The intent of this paper is not to review all assumptions and data, but rather to evaluate whether the methodology is applied in a consistent way and whether current default values address relevant management practices of palm oil production systems.

Methods

The GHG calculation method provided in Annex V of the EU-RED was used to calculate the GHG-emissions from palm oil production systems. Moreover, the internal nitrogen recycling on the plantation was calculated based on monitoring data in North Sumatra.

Results and discussion

A calculation methodology is detailed in Annex V of the EU-RED. Some important aspects necessary to calculate the GHG emission savings correctly are insufficiently considered, e.g.: ? “Nitrogen recycling” within the plantation due to fronds remaining on the plantation is ignored. The associated organic N-input to the plantation and the resulting nitrous oxide emissions is not considered within the calculations, despite crop residues being taken into account for annual crops in the BIOGRACE tool. ? The calculation of GHG-emissions from residue and waste water treatment is inappropriately implemented despite being a hot-spot for GHG emissions within the life cycle of palm oil and palm oil biodiesel. Additionally, no distinction is made between palm oil and palm kernel oil even though palm kernel oil is rarely used for biodiesel production. ? The allocation procedure does not address the most relevant oil mill management practices. Palm oil mills produce crude palm oil (CPO) in addition either nuts or palm kernels and nut shells. In the first case, the nuts would be treated as co-products and upstream emissions would be allocated based on the energy content; in the second case the kernels would be treated as co-products while the shelöls are considered as waste without upstream emissions. This has a significant impact on the resulst or GHG savings, respectively. ? It is not specified whether indirect GHG emissions from nitrogen oxide emission from the heat and power unit of palm oil mills should be taken into account.

Conclusions and recommendations

In conclusion, the existing calculation methodology described in Annex V of the EU-RED and default values are insufficient for calculating the real GHG emission savings from palm oil and palm oil biodiesel. The current default values do not reflect relevant management practices. Additionally, they protect poor management practices, such as the disposal of empty fruit bunches (EFB), and lead to an overestimation of GHG savings from palm oil biodiesel. A default value for EFB disposal must be introduced because resulting GHG emissions are substantial. Organic nitrogen from fronds must be taken into account when calculating real GHG savings from palm oil biodiesel. Further, more conservative data for FFB yield and fugitive emissions from wastewater treatment should be introduced in order to foster environmental friendly management options. Moreover, credits for bioenergy production from crop residues should be allowed in order to foster the mobilization of currently unused biomass.  相似文献   

14.
The increasing attention for global warming is likely to contribute to the introduction of policies or other incentives to reduce greenhouse gas (GHG) emissions related to livestock production, including dairy. The dairy sector is an important contributor to GHG emissions. Clinical mastitis (CM), an intramammary infection, results in reduced milk production and fertility, increases culling and mortality of cows and, therefore, has a negative impact on the efficiency (output/input) of milk production. This may increase GHG emissions per unit of product. Our objective was to estimate the impact of CM in dairy cows on GHG emissions of milk production for the Dutch situation. A dynamic stochastic simulation model was developed to simulate the dynamics and losses of CM for individual lactations. Cows receive a parity (1 to 5+), a milk production and a calving interval (CI). Based on the parity, cows have a risk of CM, with a maximum of three cases in a lactation. Pathogens causing CM were classified as gram-positive bacteria, gram-negative bacteria, or other. Based on the parity and pathogen combinations, cows had a reduced milk production, discarded milk, prolonged CI and a risk of removal (culling and mortality) that reduce productivity of dairy cows and therefore increase GHG emissions per unit of product. Using life cycle assessment, emissions of GHGs were estimated from cradle to farm gate for processes along the milk production chain that are affected by CM. Processes included were feed production, enteric fermentation, and manure management. Emissions of GHGs were expressed as kg CO2 equivalents per ton of fat-and-protein-corrected milk (kg CO2e/t FPCM). Emissions of cows with CM increased on average by 57.5 (6.2%) kg CO2e/t FPCM compared with cows without CM. This increase was caused by removal (39%), discarded milk (38%), reduced milk production (17%) and prolonged CI (6%). The GHG emissions increased by 48 kg CO2e/t FPCM for cows with one case of CM, by 69 kg CO2e/t FPCM for cows with two cases of CM and by 92 kg CO2e/t FPCM for cows with three cases of CM compared with cows without CM. Preventing CM can be an effective strategy for farmers to reduce GHG emissions and can contribute to sustainable development of the dairy sector, because this also can improve the income of farmers and the welfare of cows. The impact of CM on GHG emissions, however, will vary between farms due to environmental conditions and management practices.  相似文献   

15.
《农业工程》2014,34(4):204-212
The green credentials of hydroelectricity in terms of greenhouse-gas (GHG) emissions have been tarnished with the finding of the researches on GHG emissions from hydroelectric reservoirs in the last two decades. Substantial amounts of GHGs release from the tropical reservoirs, especially methane (CH4) from Brazil’s Amazonian areas. CH4 contributes strongly to climate change because it has a global warming potential (GWP) 24 times higher than carbon dioxide (CO2) on a per molecule basis over a 100-year time horizon. GHGs may emit from reservoirs through four different pathways to the atmosphere: (1) diffusive flux at the reservoir surface, (2) gas bubble flux in the shallow zones of a reservoir, (3) water degassing flux at the outlet of the powerhouse downstream of turbines and spillways, and (4) flux across the air–water interface in the rivers downstream of the dams. This paper reviewed the productions and emissions of CH4, CO2, and N2O in reservoirs, and the environmental variables influencing CH4 and CO2 emissions were also summarized. Moreover, the paper combined with the progress of GHG emissions from Three Gorges Reservoir and proposed three crucial problems to be resolved on GHG emissions from reservoirs at present, which would be benefit to estimate the total GHG emissions from Three Gorges Reservoir accurately.  相似文献   

16.
Milk production is responsible for emitting a range of greenhouse gases (GHGs), mainly carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). In Life Cycle Assessments (LCA), the Global Warming Potential with a time horizon of 100 years (GWP100) is used almost universally to aggregate emissions of individual gases into so-called CO2-equivalent emissions that are used to calculate the overall carbon footprint of milk production. However, there is growing awareness that, depending on the purpose of the LCA, metrics other than GWP100 could be justified and some would give a very different weighting for the short-lived gas CH4 relative to the long-lived gases CO2 and N2O when calculating the carbon footprint. Pastoral dairy production systems at different levels of intensification differ in the balance of short- and long-lived GHGs associated with on- and off-farm emissions. Differences in the carbon footprint of different production systems could therefore be highly sensitive to the choice of GHG metric. Here we explore the extent to which alternative GHG metric choices would alter the carbon footprint of New Zealand milk production at different levels of intensification at national, regional and individual farm scales and compared to the carbon footprint of milk of selected European countries. We find that the ranking of different production systems and individual farms in terms of their carbon footprint is relatively robust against the choice of GHG metric, despite significant differences in their utilisation of pastures versus supplementary off-farm feed, fertiliser use and energy consumption at various stages of farm operations. However, there are instances where alternative GHG metric choices would fundamentally change the conclusions of LCA of different production systems, including whether a move towards higher or lower input systems would increase or decrease the average carbon footprint of milk production in New Zealand. Greater transparency about the implications of alternative GHG metrics for LCA, and the often inadvertent and implicit value judgements embedded in these metrics, would help ensure that policy decisions and consumer choices based on LCA indeed deliver the climate outcomes intended by end-users.  相似文献   

17.
Cropping is responsible for substantial emissions of greenhouse gasses (GHGs) worldwide through the use of fertilizers and through expansion of agricultural land and associated carbon losses. Especially in sub‐Saharan Africa (SSA), GHG emissions from these processes might increase steeply in coming decades, due to tripling demand for food until 2050 to match the steep population growth. This study assesses the impact of achieving cereal self‐sufficiency by the year 2050 for 10 SSA countries on GHG emissions related to different scenarios of increasing cereal production, ranging from intensifying production to agricultural area expansion. We also assessed different nutrient management variants in the intensification. Our analysis revealed that irrespective of intensification or extensification, GHG emissions of the 10 countries jointly are at least 50% higher in 2050 than in 2015. Intensification will come, depending on the nutrient use efficiency achieved, with large increases in nutrient inputs and associated GHG emissions. However, matching food demand through conversion of forest and grasslands to cereal area likely results in much higher GHG emissions. Moreover, many countries lack enough suitable land for cereal expansion to match food demand. In addition, we analysed the uncertainty in our GHG estimates and found that it is caused primarily by uncertainty in the IPCC Tier 1 coefficient for direct N2O emissions, and by the agronomic nitrogen use efficiency (N‐AE). In conclusion, intensification scenarios are clearly superior to expansion scenarios in terms of climate change mitigation, but only if current N‐AE is increased to levels commonly achieved in, for example, the United States, and which have been demonstrated to be feasible in some locations in SSA. As such, intensifying cereal production with good agronomy and nutrient management is essential to moderate inevitable increases in GHG emissions. Sustainably increasing crop production in SSA is therefore a daunting challenge in the coming decades.  相似文献   

18.
A life cycle assessment (LCA) of various end‐of‐life management options for construction and demolition (C&D) debris was conducted using the U.S. Environmental Protection Agency's Municipal Solid Waste Decision Support Tool. A comparative LCA evaluated seven different management scenarios using the annual production of C&D debris in New Hampshire as the functional unit. Each scenario encompassed C&D debris transport, processing, separation, and recycling, as well as varying end‐of‐life management options for the C&D debris (e.g., combustion to generate electricity versus landfilling for the wood debris stream and recycling versus landfilling for the nonwood debris stream) and different bases for the electricity generation offsets (e.g., the northeastern U.S. power grid versus coal‐fired power generation). A sensitivity analysis was also conducted by varying the energy content of the C&D wood debris and by examining the impact of basing the energy offsets on electricity generated from various fossil fuels. The results include impacts for greenhouse gas (GHG) emissions, criteria air pollutants, ancillary solid waste production, and organic and inorganic constituents in water emissions. Scenarios with nonwood C&D debris recycling coupled with combustion of C&D wood debris to generate electricity had lower impacts than other scenarios. The nonwood C&D debris recycling scenarios where C&D wood debris was landfilled resulted in less overall impact than the scenarios where all C&D debris was landfilled. The lowest impact scenario included nonwood C&D debris recycling with local combustion of the C&D wood debris to generate electricity, providing a net gain in energy production of more than 7 trillion British thermal units (BTU) per year and a 130,000 tons per year reduction in GHG emissions. The sensitivity analysis revealed that for energy consumption, the model is sensitive to the energy content of the C&D wood debris but insensitive to the basis for the energy offset, and the opposite is true for GHG emissions.  相似文献   

19.
Goal, Scope and Background  The automotive industry has a long history in improving the environmental performance of vehicles - fuel economy and emission improvements, introduction of recycled and renewable materials, etc. The European Union also aims at improving the environmental performance of products by reducing, in particular, waste resulting from End-of-Life Vehicles (ELVs) for example. The European Commission estimates that ELVs contribute to approximately 1 % of the total waste in Europe [9]. Other European Union strategies are considering more life cycle aspects, as well as other impacts including resource or climate change. This article is summarizing the results of a European Commission funded project (LIRECAR) that aims at identifying the environmental impacts and relevance for combinations of recycling / recovery and lightweight vehicle design options over the whole life cycle of a vehicle - i.e. manufacturing, use and recycling/recovery. Three, independent and scientific LCA experts reviewed the study according to ISO 14040. From the beginning, representatives of all Life Cycle Stakeholders have been involved (European materials & supplier associations, an environmental Non-Governmental Organization, recycler’s association). Model and System Definition  The study compared 3 sets of theoretical vehicle weight scenarios: 1000 kg reference (material range of today’s end-of-life, mid-sized vehicles produced in the early 1990’s) and 2 lightweight scenarios for 100 kg and 250 kg less weight based on reference functions (in terms of comfort, safety, etc.) and a vehicle concept. The scenarios are represented by their material range of a broad range of lightweight strategies of most European car manufacturers. In parallel, three End-of-Life (EOL) scenarios are considered: EOL today and two theoretical extreme scenarios (100% recycling, respectively, 100% recovery of shredder residue fractions that are disposed of today). The technical and economical feasibility of the studied scenarios is not taken into consideration (e.g. 100% recycling is not possible). Results and Discussion  Significant differences between the various, studied weight scenarios were determined in several scenarios for the environmental categories of global warming, ozone depletion, photochemical oxidant creation (summer smog), abiotic resource depletion, and hazardous waste. However, these improvement potentials can be only realized under well defined conditions (e.g. material compositions, specific fuel reduction values and EOL credits) based on case-by-case assessments for improvements over the course of the life cycle. Looking at the studied scenarios, the relative contribution of the EOL phase represents 5% or less of the total life cycle impact for most selected impact categories and scenarios. The EOL technology variations studied do not impact significantly the considered environmental impacts. Exceptions include total waste, as long as stockpile goods (overburden, tailings and ore/coal processing residues) and EOL credits are considered. Conclusions and Recommendations  LIRECAR focuses only on lightweight/recycling, questions whereas other measures (changes in safety or comfort standards, propulsion improvements for CO2, user behavior) are beyond the scope of the study. The conclusions are also not necessarily transferable to other vehicle concepts. However, for the question of end-of-life options, it can be concluded that LIRECAR cannot support any general recommendation and/or mandatory actions to improve recycling if lightweight is affected. Also, looking at each vehicle, no justification could be found for the general assumption that lightweight and recycling greatly influence the affected environmental dimension (Global Warming Potential or resource depletion and waste, respectively). LIRECAR showed that this general assumption is not true under all analyzed circumstances and not as significant as suggested. Further discussions and product development targets shall not focus on generic targets that define the approach/technology concerned with how to achieve environmental improvement (weight reduction [kg], recycling quota [%]), but on overall life cycle improvement). To enable this case-by-case assessment, exchanges of necessary information with suppliers are especially relevant.  相似文献   

20.
The livestock sector contributes considerably to global greenhouse gas emissions (GHG). Here, for the year 2007 we examined GHG emissions in the EU27 livestock sector and estimated GHG emissions from production and consumption of livestock products; including imports, exports and wastage. We also reviewed available mitigation options and estimated their potential. The focus of this review is on the beef and dairy sector since these contribute 60% of all livestock production emissions. Particular attention is paid to the role of land use and land use change (LULUC) and carbon sequestration in grasslands. GHG emissions of all livestock products amount to between 630 and 863 Mt CO2e, or 12–17% of total EU27 GHG emissions in 2007. The highest emissions aside from production, originate from LULUC, followed by emissions from wasted food. The total GHG mitigation potential from the livestock sector in Europe is between 101 and 377 Mt CO2e equivalent to between 12 and 61% of total EU27 livestock sector emissions in 2007. A reduction in food waste and consumption of livestock products linked with reduced production, are the most effective mitigation options, and if encouraged, would also deliver environmental and human health benefits. Production of beef and dairy on grassland, as opposed to intensive grain fed production, can be associated with a reduction in GHG emissions depending on actual LULUC emissions. This could be promoted on rough grazing land where appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号