首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Palm biodiesel life cycle studies have been mainly performed for Asia and focused on greenhouse gas (GHG) intensity. The purpose of this article is to present an environmental life cycle assessment (LCA) of biodiesel produced in Portugal from palm oil (PO) imported from Colombia, addressing the direct effects of land-use change (LUC), different fertilization schemes, and biogas management options at the extraction mill.

Methods

An LC inventory and model of PO biodiesel was implemented based on data collected in five Portuguese biodiesel plants and in a palm plantation and extraction mill in the Orinoquía Region of Colombia. The emissions due to carbon stock changes associated with LUC were calculated based on the Colombian oil palm area expansion from 1990 to 2010 and on historical data of vegetation cleared for planting new palm trees. Five impact categories were assessed based on ReCiPe and CML-IA methods: GHG intensity, freshwater and marine eutrophication, photochemical oxidant formation, terrestrial acidification. A sensitivity analysis of alternative allocation approaches was performed.

Results and discussion

Palm plantation was the LC phase which contributed the most to eutrophication and acidification impacts, whereas transportation and oil extraction contributed the most to photochemical oxidation. An increase in carbon stock due to LUC associated with the expansion of Colombian oil palm was calculated (palm is a perennial crop with higher carbon stock than most previous land-uses). The choice of the fertilization scheme that leads to the lowest environmental impacts is contradictory among various categories. The use of calcium ammonium nitrate (followed by ammonium sulfate) leads to the lowest acidification and eutrophication impacts. The highest GHG intensity was calculated for calcium ammonium nitrate, while the lowest was for ammonium sulfate and poultry manure. Biogas captured and flared at the oil extraction mill instead of being released into the atmosphere had the lowest impacts in all categories (GHG intensity reduced by more than 60 % when biogas is flared instead of released).

Conclusions

Recommendation on the selection of the fertilization scheme depends on the environmental priority. ReCiPe and CML showed contradictory results for eutrophication and photochemical oxidation; however, uncertainty may impair strong recommendations. GHG intensity and photochemical oxidation impacts can be significantly reduced if biogas is flared instead of being released. However, more efficient biogas management should be implemented in order to reduce the impacts further.
  相似文献   

2.

Purpose

The emission of greenhouse gases (GHG) is a key criterion in the environmental assessment of biofuels. Life cycle inventories taking into account the latest methodological developments are an essential prerequisite for this assessment. In the last years, substantial progresses in the modelling of nitrogen emissions relevant for the climate as well as in modelling the emissions from land use change (LUC) have been achieved. Therefore, the biomass production inventories in the ecoinvent database were revised to take into account these developments.

Methods

The IPCC method tier 1 has been used for the assessment of N2O emissions. Induced emissions from NH3 and NO3 were included as well. Due to the importance of the latter emissions for N2O formation, these emissions have also been updated and harmonised. The Agrammon model was used for the NH3 emissions. The SALCA-NO3 model has been applied in the European inventories to estimate nitrate leaching, whilst in non-European inventories the SQCB-NO3 model has been used. The quantification of the land use change areas has been based on annualized, retrospective data of the last 20 years. All carbon pools (from aboveground biomass to soil organic carbon) were considered and differentiated on a regional level for all of the natural vegetation categories affected. Whenever possible, default values and methods from the IPCC 2006 were applied.

Results and discussion

The changes for ammonia emissions were generally very small (?5 % on average). The nitrate emissions increased on average by +13 %, but this slight trend is the result of important downward and upward changes, whilst the average N2O emissions decreased by ?26 %. For the existing inventories of soybean, palm oil and sugarcane production, significant increases of GHG emissions resulted from LUC modelling. This was mainly due to the consistent inclusion of all carbon stocks according to the IPCC guidelines. The calculation method can also result in important C sequestration effects in certain cases like African Jatropha production.

Conclusions

The changes in greenhouse gas emissions due to the updated methodology were significant. This shows that life cycle assessment studies for biofuels using older methodological bases need to be revised and could lead to different conclusions. The implemented and cultivated superstructure for LUC modelling is modular and flexible and can be easily extended to other important crop activities. The new parameterisation functionality applied for the activities provides powerful means for the simple generation of site-specific activities.
  相似文献   

3.

Purpose

Chile is the second largest blueberry producer and exporter worldwide. At the global level, there is a lack of information by means of field data about greenhouse gas emissions from organic cultivation of this fruit. This study obtains a resource use inventory and assesses the cradle-to-farm gate carbon footprint (CF) of organic blueberry (Vaccinium corymbosum) production in the main cultivation area of Chile in order to identify CF key factors and to provide improvement measures.

Methods

The method used in this study follows the ISO 14040 framework and the main recommendations in the PAS 2050 guide as well as its specification for horticultural products PAS 2050-1. Primary data were collected for three consecutive production seasons from five organic Chilean blueberry orchards and calculations conducted with the GaBi 4 software. Agricultural factors such as fertilizers, pesticides, fossil fuels, electricity, materials, machinery, and direct land use change (LUC) are included. Only three orchards present direct LUC.

Results and discussion

The direct LUC associated with the conversion from annual crops to perennial crops is a key factor in the greenhouse gas removals from the orchards. When accounting for direct LUC, the CF of organic blueberry production in the studied orchards ranges from removals (reported as negative value) of ?0.94 to emissions of 0.61 kg CO2-e/kg blueberry. CF excluding LUC ranges from 0.27 to 0.69 kg CO2-e/kg blueberry. The variability in the results of the orchards suggests that the production practices have important effects on the CF. The factors with the greatest contribution to the greenhouse emissions are organic fertilizers followed by energy use causing, on average, 50 and 43 % of total emissions, respectively.

Conclusions

The CF of the organic blueberry orchards under study decreases significantly when taking into account removals related to LUC. The results highlight the importance of reporting separately the greenhouse gas (GHG) emissions from LUC. The CF of blueberry production could be reduced by optimizing fertilizer application, using cover crops and replacing inefficient tractors and large irrigation pumps. The identification of improvement measures would be a useful guide for changing grower practices.
  相似文献   

4.

Purpose

The aim of this paper is to evaluate assumptions and data used in calculations  related to palm oil produced for biodiesel production relative to the European Renewable Energy Directive (EU-RED). The intent of this paper is not to review all assumptions and data, but rather to evaluate whether the methodology is applied in a consistent way and whether current default values address relevant management practices of palm oil production systems.

Methods

The GHG calculation method provided in Annex V of the EU-RED was used to calculate the GHG-emissions from palm oil production systems. Moreover, the internal nitrogen recycling on the plantation was calculated based on monitoring data in North Sumatra.

Results and discussion

A calculation methodology is detailed in Annex V of the EU-RED. Some important aspects necessary to calculate the GHG emission savings correctly are insufficiently considered, e.g.: ? “Nitrogen recycling” within the plantation due to fronds remaining on the plantation is ignored. The associated organic N-input to the plantation and the resulting nitrous oxide emissions is not considered within the calculations, despite crop residues being taken into account for annual crops in the BIOGRACE tool. ? The calculation of GHG-emissions from residue and waste water treatment is inappropriately implemented despite being a hot-spot for GHG emissions within the life cycle of palm oil and palm oil biodiesel. Additionally, no distinction is made between palm oil and palm kernel oil even though palm kernel oil is rarely used for biodiesel production. ? The allocation procedure does not address the most relevant oil mill management practices. Palm oil mills produce crude palm oil (CPO) in addition either nuts or palm kernels and nut shells. In the first case, the nuts would be treated as co-products and upstream emissions would be allocated based on the energy content; in the second case the kernels would be treated as co-products while the shelöls are considered as waste without upstream emissions. This has a significant impact on the resulst or GHG savings, respectively. ? It is not specified whether indirect GHG emissions from nitrogen oxide emission from the heat and power unit of palm oil mills should be taken into account.

Conclusions and recommendations

In conclusion, the existing calculation methodology described in Annex V of the EU-RED and default values are insufficient for calculating the real GHG emission savings from palm oil and palm oil biodiesel. The current default values do not reflect relevant management practices. Additionally, they protect poor management practices, such as the disposal of empty fruit bunches (EFB), and lead to an overestimation of GHG savings from palm oil biodiesel. A default value for EFB disposal must be introduced because resulting GHG emissions are substantial. Organic nitrogen from fronds must be taken into account when calculating real GHG savings from palm oil biodiesel. Further, more conservative data for FFB yield and fugitive emissions from wastewater treatment should be introduced in order to foster environmental friendly management options. Moreover, credits for bioenergy production from crop residues should be allowed in order to foster the mobilization of currently unused biomass.  相似文献   

5.
6.

Purpose

The rapid growth of vehicle sales and usage has highlighted the need for greenhouse gas (GHG) emission reduction in Macau, a special administrative region (SAR) of China. As the most primary vehicle type, light-duty vehicles (LDV, including light-duty gasoline vehicles (LDGVs) and light-duty diesel vehicles (LDDVs)) play a key role in promoting the GHG reduction and development of green transportation system in Macau.

Methods

This study, on the basis of real-world tested and statistical data, firstly performed a streamlined life-cycle assessment (SLCA) on LDVs, to evaluate the potential GHG emissions and reduction through shifting to hybrid electric vehicles (HEVs) and electric vehicles (EVs).

Results and discussion

The results show that the mean GHG emissions from the LDGVs, LDDVs, and HEVs per 100 km were 25.16, 20.30, and 15.00 kg CO2 eq, respectively. Under the current electricity mix in Macau, EVs with the emissions of 12.39 kg CO2 eq/100 km can achieve a significant GHG emission reduction of LDVs in Macau. The total GHG emissions from LDVs increased from 124.99 to 247.82 thousand metric tons over the periods 2001–2014, with a 5.42% annual growth rate. A scenario analysis indicated that the development of HEVs and EVs—especially EVs—has the potential to control the GHG emissions from LDVs. Under the electricity mix of natural gas (NG) and solar energy (SE), the GHG emissions from EVs would drop by about 22 and 28%, respectively, by 2030.

Conclusions

This study develops a useful approach to evaluate the potential GHG emissions and its reduction strategies in Macau. All the obtained results could be useful for decision makers, providing robust support for drawing up an appropriate plan for improving green transportation systems in Macau.
  相似文献   

7.

Purpose

Variability in consumer behaviour can significantly influence the environmental performance of products and their associated impacts and this is typically not quantified in life cycle assessments. The goal of this paper is to demonstrate how consumer behaviour data can be used to understand and quantify the variability in the greenhouse gas emissions from domestic laundry washing across Europe.

Methods

Data from a pan-European consumer survey of product usage and washing habits was combined with internal company data on product format greenhouse gas (GHG) footprints and in-home measurement of energy consumption of laundry washing as well as literature data to determine the GHG footprint of laundry washing. The variability associated with four laundry detergent product formats and four wash temperature settings in washing machines were quantified on a per wash cycle basis across 23 European countries. The variability in GHG emissions associated with country electricity grid mixes was also taken into account. Monte Carlo methods were used to convert the variability in the input parameters into variability of the life cycle GHG emissions. Rank correlation analysis was used to quantify the importance of the different sources of variability.

Results and discussion

Both inter-country differences in background electricity mix as well as intra-country variation in consumer behaviour are important for determining the variability in life cycle GHG emissions of laundry detergents. The average GHG emissions related to the laundry washing process in the 23 European countries in 2014 was estimated to be 5?×?102 g CO2?eq/wash cycle, but varied by a factor of 6.5 between countries. Intra-country variability is between a factor of 3.5 and 5.0 (90% interval). For countries with a mainly fossil-based electricity system, the dominant source of variability in GHG emissions results from consumer choices in the use of washing machines. For countries with a relatively low-carbon electricity mix, variability in life cycle GHG emissions is mainly determined by laundry product-related parameters.

Conclusions

The combination of rich data sources enabled the quantification of the variability in the life cycle GHG emissions of laundry washing which is driven by a variety of consumer choices, manufacturer choices and infrastructural differences of countries. The improved understanding of the variability needs to be balanced against the cost and challenges of assessing of consumer habits.
  相似文献   

8.

Purpose

Australia is the largest supplier of high-quality wool in the world. The environmental burden of sheep production must be shared between wool and meat. We examine different methods to handle these co-products and focus on proportional protein content as a basis for allocation, that is, protein mass allocation (PMA). This is the first comprehensive investigation applying PMA for calculating greenhouse gas (GHG) emissions for Australian sheep production, evaluating the variation in PMA across a large number of farms and locations over 20 years.

Materials and methods

Inventory data for two superfine wool Merino farms were obtained from farmer records, interviews and site visits in study 1. Livestock GHG emissions were modelled using Australian National GHG Inventory methods. A comparison was made of mass, protein mass and economic allocation and system expansion methods for handling co-production of wool and sheep meat. In study 2, typical crossbred ewe, Merino ewe and Merino wether flocks in each of the 28 locations in eight climate zones were modelled using the GrassGro/GRAZPLAN simulation model and historical climatic data to examine the variation in PMA values for different enterprise types.

Results and discussion

Different methods for handling co-products in study 1 changed allocated GHG emissions more than fourfold, highlighting the sensitivity to method choice. In study 2, enterprise, climate zone and year and their interactions had significant effects on PMA between wool and liveweight (LW) sold. The wool PMA (wool protein as proportion of total protein sold) least square means (LSM) were 0.61?±?0.003 for wethers, 0.43?±?0.003 for Merino ewes and 0.27?±?0.003 for crossbred ewe enterprises. The wool PMA LSM for the main effect of Köppen climate zone varied from 0.39 to 0.46. Two zones (no dry season/warm summer and distinctively dry and hot) had significantly lower wool PMA LSM, of 0.39 and 0.41, respectively, than the four other climate zones.

Conclusions

Effects of superfine wool production on GHG emissions differed between regions in response to differences in climate and productivity. Regarding methods for handling co-production, system expansion showed the greatest contrast between the two studied flocks and highlighted the importance of meat from wool production systems. However, we also propose PMA as a simple, easily applied allocation approach for use when attributional life cycle assessment (LCA) is undertaken.
  相似文献   

9.

Purpose

Mangrove forests have been recognized as important regulators of greenhouse gases (GHGs), yet the resulting land use and land-use change (LULUC) emissions have rarely been accounted for in life cycle assessment (LCA) studies. The present study therefore presents up-to-date estimates for GHG emissions from mangrove LULUC and applies them to a case study of shrimp farming in Vietnam.

Methods

To estimate the global warming impacts of mangrove LULUC, a combination of the International Panel for Climate Change (IPCC) guidelines, the Net Committed Emissions, and the Missed Potential Carbon Sink method were used. A literature review was then conducted to characterize the most critical parameters for calculating carbon losses, missed sequestration, methane fluxes, and dinitrogen monoxide emissions.

Results and discussion

Our estimated LUC emissions from mangrove deforestation resulted in 124 t CO2 ha?1 year?1, assuming IPCC’s recommendations of 1 m of soil loss, and 96% carbon oxidation. In addition to this, 1.25 t of carbon would no longer be sequestered annually. Discounted over 20 years, this resulted in total LULUC emissions of 129 t CO2 ha?1 year?1 (CV = 0.441, lognormal distribution (ln)). Shrimp farms in the Mekong Delta, however, can today operate for 50 years or more, but are 1.5 m deep (50% oxidation). In addition to this, Asian tiger shrimp farming in mixed mangrove concurrent farms (the only type of shrimp farm that resulted in mangrove deforestation since 2000 in our case study) resulted in 533 kg methane and 1.67 kg dinitrogen monoxide per hectare annually. Consequently, the LULUC GHG emissions resulted in 184 and 282 t CO2-eq t?1 live shrimp at farm gate, using mass and economic allocation, respectively. These GHG emissions are about an order of magnitude higher than from semi-intensive or intensive shrimp farming systems. Limitations in data quality and quantity also led us to quantify the uncertainties around our emission estimates, resulting in a CV of between 0.4 and 0.5.

Conclusions

Our results reinforce the urgency of conserving mangrove forests and the need to quantify uncertainties around LULUC emissions. It also questions mixed mangrove concurrent shrimp farming, where partial removal of mangrove forests is endorsed based upon the benefits of partial mangrove conservation and maintenance of certain ecosystem services. While we recognize that these activities limit the chances of complete removal, our estimates show that large GHG emissions from mangrove LULUC question the sustainability of this type of shrimp farming, especially since mixed mangrove farming only provide 5% of all farmed shrimp produced in Vietnam.
  相似文献   

10.

Purpose

Governments around the world encourage the use of biofuels through fuel standard policies that require the addition of renewable diesel in diesel fuel from fossil fuels. Environmental impact studies of the conversion of biomass to renewable diesel have been conducted, and life cycle assessments (LCA) of the conversion of lignocellulosic biomass to hydrogenation-derived renewable diesel (HDRD) are limited, especially for countries with cold climates like Canada.

Methods

In this study, an LCA was conducted on converting lignocellulosic biomass to HDRD by estimating the well-to-wheel greenhouse gas (GHG) emissions and fossil fuel energy input of the production of biomass and its conversion to HDRD. The approach to conduct this LCA includes defining the goal and scope, compiling a life cycle inventory, conducting a life cycle impact assessment, and executing a life cycle interpretation. All GHG emissions and fossil fuel energy inputs were based on a fast pyrolysis plant capacity of 2000 dry tonnes biomass/day. A functional unit of 1 MJ of HDRD produced was adopted as a common unit for data inputs of the life cycle inventory. To interpret the results, a sensitivity analysis was performed to measure the impact of variables involved, and an uncertainty analysis was performed to assess the confidence of the results.

Results and discussion

The GHG emissions of three feedstocks studied—whole tree (i.e., chips from cutting the whole tree), forest residues (i.e., chips from branches and tops generated from logging operations), and agricultural residues (i.e., straw from wheat and barley)—range from 35.4 to 42.3 g CO2,eq/MJ of HDRD (i.e., lowest for agricultural residue- and highest for forest residue-based HDRD); this is 53.4–61.1 % lower than fossil-based diesel. The net energy ratios range from 1.55 to 1.90 MJ/MJ (i.e., lowest for forest residue- and highest for agricultural residue-based HDRD) for HDRD production. The difference in results among feedstocks is due to differing energy requirements to harvest and pretreat biomass. The energy-intensive hydroprocessing stage is responsible for most of the GHG emissions produced for the entire conversion pathway.

Conclusions

Comparing feedstocks showed the significance of the efficiency in the equipment used and the physical properties of biomass in the production of HDRD. The overall results show the importance of efficiency at the hydroprocessing stage. These findings indicate significant GHG mitigation benefits for the oil refining industry using available lignocellulosic biomass to produce HDRD for transportation fuel.
  相似文献   

11.

Purpose

The aim of this study was to estimate the total greenhouse gas (GHG) emissions generated from whole life cycle stages of a sewer pipeline system and suggest the strategies to mitigate GHG emissions from the system.

Methods

The process-based life cycle assessment (LCA) with a city-scale inventory database of a sewer pipeline system was conducted. The GHG emissions (direct, indirect, and embodied) generated from a sewer pipeline system in Daejeon Metropolitan City (DMC), South Korea, were estimated for a case study. The potential improvement actions which can mitigate GHG emissions were evaluated through a scenario analysis based on a sensitivity analysis.

Results and discussion

The amount of GHG emissions varied with the size (150, 300, 450, 700, and 900 mm) and materials (polyvinyl chloride (PVC), polyethylene (PE), concrete, and cast iron) of the pipeline. Pipes with smaller diameter emitted less GHG, and the concrete pipe generated lower amount of GHG than pipes made from other materials. The case study demonstrated that the operation (OP) stage (3.67 × 104 t CO2eq year?1, 64.9%) is the most significant for total GHG emissions (5.65 × 104 t CO2eq year?1) because a huge amount of CH4 (3.51 × 104 t CO2eq year?1) can be generated at the stage due to biofilm reaction in the inner surface of pipeline. Mitigation of CH4 emissions by reducing hydraulic retention time (HRT), optimizing surface area-to-volume (A/V) ratio of pipes, and lowering biofilm reaction during the OP stage could be effective ways to reduce total GHG emissions from the sewer pipeline system. For the rehabilitation of sewer pipeline system in DMC, the use of small diameter pipe, combination of pipe materials, and periodic maintenance activities are suggested as suitable strategies that could mitigate GHG emissions.

Conclusions

This study demonstrated the usability and appropriateness of the process-based LCA providing effective GHG mitigation strategies at a city-scale sewer pipeline system. The results obtained from this study could be applied to the development of comprehensive models which can precisely estimate all GHG emissions generated from sewer pipeline and other urban environmental systems.
  相似文献   

12.
It is commonly recognized that large uncertainties exist in modelled biofuel‐induced indirect land‐use change, but until now, spatially explicit quantification of such uncertainties by means of error propagation modelling has never been performed. In this study, we demonstrate a general methodology to stochastically calculate direct and indirect land‐use change (dLUC and iLUC) caused by an increasing demand for biofuels, with an integrated economic – land‐use change model. We use the global Computable General Equilibrium model MAGNET, connected to the spatially explicit land‐use change model PLUC. We quantify important uncertainties in the modelling chain. Next, dLUC and iLUC projections for Brazil up to 2030 at different spatial scales and the uncertainty herein are assessed. Our results show that cell‐based (5 × 5 km2) probabilities of dLUC range from 0 to 0.77, and of iLUC from 0 to 0.43, indicating that it is difficult to project exactly where dLUC and iLUC will occur, with more difficulties for iLUC than for dLUC. At country level, dLUC area can be projected with high certainty, having a coefficient of variation (cv) of only 0.02, while iLUC area is still uncertain, having a cv of 0.72. The latter means that, considering the 95% confidence interval, the iLUC area in Brazil might be 2.4 times as high or as low as the projected mean. Because this confidence interval is so wide that it is likely to straddle any legislation threshold, our opinion is that threshold evaluation for iLUC indicators should not be implemented in legislation. For future studies, we emphasize the need for provision of quantitative uncertainty estimates together with the calculated LUC indicators, to allow users to evaluate the reliability of these indicators and the effects of their uncertainty on the impacts of land‐use change, such as greenhouse gas emissions.  相似文献   

13.

Purpose

The well-to-wheel (WTW) methodology is widely used for policy support in road transport. It can be seen as a simplified life cycle assessment (LCA) that focuses on the energy consumption and CO2 emissions only for the fuel being consumed, ignoring other stages of a vehicle’s life cycle. WTW results are therefore different from LCA results. In order to close this gap, the authors propose a hybrid WTW+LCA methodology useful to assess the greenhouse gas (GHG) profiles of road vehicles.

Methods

The proposed method (hybrid WTW+LCA) keeps the main hypotheses of the WTW methodology, but integrates them with LCA data restricted to the global warming potential (GWP) occurring during the manufacturing of the battery pack. WTW data are used for the GHG intensity of the EU electric mix, after a consistency check with the main life cycle impact (LCI) sources available in literature.

Results and discussion

A numerical example is provided, comparing GHG emissions due to the use of a battery electric vehicle (BEV) with emissions from an internal combustion engine vehicle. This comparison is done both according to the WTW approach (namely the JEC WTW version 4) and the proposed hybrid WTW+LCA method. The GHG savings due to the use of BEVs calculated with the WTW-4 range between 44 and 56 %, while according to the hybrid method the savings are lower (31–46 %). This difference is due to the GWP which arises as a result of the manufacturing of the battery pack for the electric vehicles.

Conclusions

The WTW methodology used in policy support to quantify energy content and GHG emissions of fuels and powertrains can produce results closer to the LCA methodology by adopting a hybrid WTW+LCA approach. While evaluating GHG savings due to the use of BEVs, it is important that this method considers the GWP due to the manufacturing of the battery pack.
  相似文献   

14.

Introduction

Metabolomics analysis of oil palm leaves is a promising strategy to prospect new added-value compounds of this underutilized oil industry by-product. Although previous studies had reported some metabolites identified in this matrix, they had been focused on few compounds using conventional analytical techniques.

Objectives

This study aimed to develop a new high throughput method based on metabolomics able to detect a wide range of metabolites classes in Elaeis guineensis leaves. Furthermore, we investigate the effects caused by harvesting/sample preparation steps for the metabolites identification.

Method

Metabolites analyses were performed by ultra-high liquid chromatography—mass spectrometry (UHPLC–MS) using both ionization modes, ESI(+)–MS and ESI(?)–MS. ANOVA simultaneous component analysis (ASCA) of the resulting complex multivariate dataset was applied to evaluate metabolic alterations. Identification of major metabolites was performed by high resolution mass spectrometry and MS/MS experiments.

Result

A high throughput method based on UHPLC–MS was successfully developed to E. guineensis leaves, detecting from polar to non-polar acid and basic metabolites. According to ASCA, oil palm leaves metabolic fingerprintings have shown influence of transportation/storage and extraction solvent used chosen. In fact, the most significant effect is due to the solvent composition. A total of thirteen metabolites were assigned based on HRMS and MS/MS experiments. However, only seven metabolites identified were previously reported, which represents a potential field to discover new metabolites.

Conclusion

Sample preparation steps should be carefully performed in metabolomics studies, because metabolites will be extracted and identified based on transport and solvent of extraction conditions. In this study, we established a reliable analytical protocol, from sample preparation to data analyses, to prospect new metabolites in oil palm leaves. This protocol could be further applied to similar oil-bearing crops.
  相似文献   

15.

Purpose

The purpose of this study was to quantify the spatial and technological variability in life cycle greenhouse gas (GHG) emissions, also called the carbon footprint, of durum wheat production in Iran.

Methods

The calculations were based on information gathered from 90 farms, each with an area ranging from 1 to 150 ha (average 16 ha). The carbon footprint of durum wheat was calculated by quantifying the biogenic GHG emissions of carbon loss from soil and biomass, as well as the GHG emissions from fertilizer application and machinery use, irrigation, transportation, and production of inputs (e.g., fertilizers, seeds, and pesticides). We used Spearman’s rank correlation to quantify the relative influence of technological variability (in crop yields, fossil GHG emissions, and N2O emissions from fertilizer application) and spatial variability (in biogenic GHG emissions) on the variation of the carbon footprint of durum wheat.

Results and discussion

The average carbon footprint of 1 kg of durum wheat produced was 1.6 kg CO2-equivalents with a minimum of 0.8 kg and a maximum of 3.0 kg CO2-equivalents. The correlation analysis showed that variation in crop yield and fertilizer application, representing technological variability, accounted for the majority of the variation in the carbon footprint, respectively 76 and 21%. Spatial variation in biogenic GHG emissions, mainly resulting from differences in natural soil carbon stocks, accounted for 3% of the variation in the carbon footprint. We also observed a non-linear relationship between the carbon footprint and the yield of durum wheat that featured a scaling factor of ?2/3. This indicates that the carbon footprint of durum wheat production (in kg CO2-eq kg?1) typically decreases by 67% with a 100% increase in yield (in kg ha?1 year?1).

Conclusions

Various sources of variability, including variation between locations and technologies, can influence the results of life cycle assessments. We demonstrated that technological variability exerts a relatively large influence on the carbon footprint of durum wheat produced in Iran with respect to spatial variability. To increase the durum wheat yield at farms with relatively large carbon footprints, technologies such as site-specific nutrient application, combined tillage, and mechanized irrigation techniques should be promoted.
  相似文献   

16.

Purpose

The cultivation of pomegranate worldwide has increased sharply in the past few years, mainly due to the growing perception that this fruit has numerous medical benefits. Despite the proliferation of studies delving into the properties of pomegranate from a medical and dietary perspective, its analysis from an environmental perspective has yet to be carried out in depth. Hence, the present study aims at understanding the life cycle environmental impacts in terms of greenhouse gas (GHG) emissions derived from the cultivation, processing and distribution abroad of fresh pomegranate grown at an innovative farm in a hyper-arid area in the region of Ica (Peru).

Methods

The international standards for life cycle methodologies were considered in order to obtain the overall carbon footprint (CFP) of fresh pomegranate cultivation, processing and distribution. Data acquisition was performed at the cultivation site and supported by the ecoinvent® database, whereas GHG emissions were modelled using the IPCC 2007 method. In addition, biogenic carbon sequestration was included in the assessment, using two distinct models, a first one to model the aerial carbon sequestered by the pomegranate trees and a second, using the IPCC Soil Carbon Tool for soil storage.

Results and discussion

Annual results show that on-site GHG emissions can be mitigated to a great extent in the first years of production thanks to biogenic carbon sequestration. However, through time, this tendency is reverted, and in years of maximum pomegranate productivity, GHG emissions are estimated to outweigh those linked to sequestration, despite the relevant minimization of emissions when using innovative irrigation schemes as compared to the conventional flood irrigation in the region.

Conclusions

Despite the threat in terms of water depletion and security, the expansion of Peru’s agricultural frontier in hyper-arid areas appears to be a feasible strategy for carbon fixation, although current agricultural practices, such as the use of machinery or electricity, need to be optimized to make positive the carbon balance.
  相似文献   

17.
Shift in the marginal supply of vegetable oil   总被引:4,自引:4,他引:0  

Background, Aims and Scope

The consequential approach to system delimitation in LCA requires that consideration of the technologies and suppliers included are ‘marginal’, i.e. that they are actually affected by a change in demand. Furthermore, coproduct allocation must be avoided by system expansion. Vegetable oils constitute a significant product group included in many LCAs that are intended for use in decision support. This article argues that the vegetable oil market has faced major changes around the turn of the century. The aim of this study is to study the marginal supply of vegetable oil as it has shifted to palm oil and describe the product system of the new supply.

Methods

The methods for identification of marginal technologies and suppliers and for avoiding co-product allocation are based on the work of Weidema (2003). The marginal vegetable oil is identified on the basis of agricultural statistics on production volumes and prices. A co-product from palm oil production is palm kernel meal, which is used for fodder purposes where it has two main properties: protein and energy. When carrying out system expansion, these properties are taken into account.

Results

The major vegetable oils are soy oil, palm oil, rapeseed oil and sun oil. These oils are substitutable within the most common applications. Based on market trends, a shift from rapeseed oil to palm oil as the marginal vegetable oil is identified around the year 2000, when palm oil turns out to be the most competitive oil. It is recommended to regard palm oil and its dependent co-product palm kernel oil as the marginal vegetable oil. The analysis of the product system shows that the demand for 1 kg palm oil requires 4.49 kg FFB (oil palm fruit) and the displacement of 0.035 kg soybeans (marginal source of fodder protein) and 0.066 kg barley (marginal source of fodder energy).

Discussion

The identification of the marginal vegetable oil and the avoidance of co-product allocation by system expansion showed that several commodities may be affected when using the consequential approach. Hence, the product system for vegetable oils is relatively complex compared to traditional LCAs in which average technologies and suppliers are applied and in which co-product allocation is carried out by applying an allocation factor.

Conclusions

This article presents how the marginal vegetable oil can be identified and that co-product allocation between oils and meal can be avoided by system expansion, by considering the energy and protein content in the meal, which displaces a mix of the marginal sources of energy and protein for animal fodder (barley and soy meal, respectively).

Recommendations and Perspectives

The implication of a shift in the marginal vegetable oil is significant. Many LCAs on rapeseed oil have been conducted and are being used as decision support in the bio energy field. Thus, based on consequential LCA methodology, it is argued that these LCAs need to be revised, since they no longer focus on the oil actually affected.
  相似文献   

18.

Purpose

Production of feed is an important contributor to life cycle greenhouse gas emissions, or carbon footprints (CFPs), of livestock products. Consequences of methodological choices and data sensitivity on CFPs of feed ingredients were explored to improve comparison and interpretation of CFP studies. Methods and data for emissions from cultivation and processing, land use (LU), and land use change (LUC) were analyzed.

Method

For six ingredients (maize, wheat, palm kernel expeller, rapeseed meal, soybean meal, and beet pulp), CFPs resulting from a single change in methods and data were compared with a reference CFP, i.e., based on IPCC Tier 1 methods, and data from literature.

Results and discussion

Results show that using more detailed methods to compute N2O emissions from cultivation hardly affected reference CFPs, except for methods to determine $ \mathrm{NO}_3^{-} $ leaching (contributing to indirect N2O emissions) in which the influence is about ?7 to +12 %. Overall, CFPs appeared most sensitive to changes in crop yield and applied synthetic fertilizer N. The inclusion of LULUC emissions can change CFPs considerably, i.e., up to 877 %. The level of LUC emissions per feed ingredient highly depends on the method chosen, as well as on assumptions on area of LUC, C stock levels (mainly aboveground C and soil C), and amortization period.

Conclusions

We concluded that variability in methods and data can significantly affect CFPs of feed ingredients and hence CFPs of livestock products. Transparency in methods and data is therefore required. For harmonization, focus should be on methods to calculate $ \mathrm{NO}_3^{-} $ leaching and emissions from LULUC. It is important to consider LUC in CFP studies of food, feed, and bioenergy products.  相似文献   

19.

Purpose

The aim of this article is to present the first life cycle assessment of chitosan production based on data from two real producers located in India and Europe. The goal of the life cycle assessment (LCA) was to understand the main hot spots in the two supply chains, which are substantially different in terms of raw materials and production locations.

Methods

The LCA is based on consequential modelling principles, whereby allocation is avoided by means of substitution, and market mixes include only flexible, i.e. non-constrained suppliers. The product system is cradle to gate and includes the production of raw materials, namely waste shells from snow crab and shrimp in Canada and India, respectively, the processing of these in China and India and the manufacture of chitosan in Europe and India. Primary data for chitin and chitosan production were obtained from the actual producers, whereas raw material acquisition as well as waste management activities were based on literature sources. The effects of indirect land use change (iLUC) were also included. Impact assessment was carried out at midpoint level by means of the recommended methods in the International Life Cycle Data (ILCD) handbook.

Results and discussion

In the Indian supply chain, the production of chemicals (HCl and NaOH) appears as an important hot spot. The use of shrimp shells as raw material affects the market for animal feed, resulting in a credit in many impact indicators, especially in water use. The use of protein waste as fertilizer is also an important source of greenhouse-gas and ammonia emissions. In the European supply chain, energy use is the key driver for environmental impacts, namely heat production based on coal in China and electricity production in China and Europe. The use of crab shells as raw material avoids the composting process they would be otherwise subject to, leading to a saving in composting emissions, especially ammonia. In the Indian supply chain, the effect of iLUC is relevant, whereas in the European one, it is negligible.

Conclusions

Even though we assessed two products from the same family, the results show that they have very different environmental profiles, reflecting their substantially different supply chains in terms of raw material (shrimp shells vs. crab shells), production locations (locally produced vs. a global supply chain involving three continents) and the different applications (general-purpose chitosan vs. chitosan for the medical sector).
  相似文献   

20.

Background

Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source.

Results

Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility.

Conclusion

High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号