首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Asteraceae are commonly divided into two large subfamilies, the Cichorioideae (syn. Lactucoideae; Mutisieae, Cardueae, Lactuceae, Vernonieae, Liabeae, Arctoteae) and the Asteroideae (Inuleae, Astereae, Anthemideae, Senecioneae, Calenduleae, Heliantheae, Eupatorieae). Recent phylogenetic analyses based on morphological and chloroplast DNA data conclusively show that the Mutisieae-Barnadesiinae are the sister group to the rest of the family and that the Asteroideae tribes form a monophyletic group. The Vernonieae and Liabeae are sister tribes and the Eupatorieae are nested within a paraphyletic Heliantheae; otherwise tribal interrelationships are still largely uncertain. The Mutisieae-Barnadesiinae are excluded from the Mutisieae and elevated to the new subfamily Barnadesioideae. The two subfamilies Barnadesioideae and Asteroideae are monophyletic, whereas the status of the Cichorioideae remains uncertain. Analyses of chloroplast DNA data support the monophyly of the Cichorioideae; however, morphological data indicate that the subfamily is paraphyletic. Further studies are needed to test the monophyly of the Cichorioideae, as well as to further resolve tribal interrelationships in the two larger subfamilies.  相似文献   

2.
TRIBAL INTERRELATIONSHIPS OF THE ASTERACEAE   总被引:3,自引:0,他引:3  
Abstract— A cladistic analysis involving 27 tribes and subtribes of Asteraceae and 81 characters is presented. The terminal taxa are mainly those of present tribal classification, though some apparently poly- and paraphyletic tribes, notably the Mutisieae and the Inuleae, have been represented by sub-tribal taxa. Characters are assembled from all available sources. Corolla types, styles and stamens have provided many characters. The Lobeliaceae are used as an outgroup and are considered as the most probable sister group of the Asteraceae. There is a basal dichotomy in the family, the Mutisieae-Barnadesiinae being the monophyletic sister group of the remaining major, also monophyletic part of the family. The recent family division into two subfamilies about equal in size, the Cichorioideae and the Asteroideae, neither represents a basal dichotomy nor a sister group relationship within the Asteraceae. The Asteroideae are monophyletic and have their sister group within the paraphyletic Cichorioideae. Interrelationships among the cichorioid tribes are still unclear. The Lactuceae, Eremothamneae, Vernonieae and Liabeae may be one monophyletic group, and the Arctoteae, Carlineae, Echinopsideae and Cardueae another. The Mutisieae are a paraphyletic grade at the base of the family. Within the subfamily Asteroideae tribal interrelationships are also rather unclear. The Anthemideae and the Heliantheae sensu lato (including the Helenieae, Tageteae, Coreopsideae and all helenioid/helianthoid representatives sometimes placed in the Senecioneae) may be sister groups. The Heliantheae appear to be monophyletic and there is little support for the hypothesis that other tribes are derived from or have their sister group within the Heliantheae. The Astereae and the Eupatorieae may be sister groups, though a closer relationship between the Eupatorieae and the Heliantheae is possible. The Inuleae are a paraphyletic grade group at the base of the subfamily Asteroideae in the same way as the Mutiseae are a grade group at the base of the family.  相似文献   

3.
This paper provides a general survey of the occurrence of diterpenes in the Asteraceae. Data on 4351 botanical occurrences were obtained from the literature. These were grouped by skeleton for each genus. Then, the genera were grouped by subtribes, which, in turn, were gathered in tribes, followed by subfamilies. In spite of the low number of species containing diterpenes, it was possible to describe some structural features of these compounds, i.e. the skeletal types in various taxa and the positions in some skeletons that are always oxidized or never undergo oxidation in some genera. Thus, it was verified that: in the subfamily Cichorioideae, only a few of the studied species possess diterpenes, wherein kaurane is the most frequent diterpene skeleton. In the Asteroideae, the presence of diterpenes is much greater than that in the Cichorioideae and Carduoideae. At tribal taxonomic level, for example, the Astereae produce labdanes and clerodanes; Heliantheae and Eupatorieae produce kauranes and labdanes, respectively; and Calenduleae produce pimaranes. Some taxonomic implications are presented.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 291–308.  相似文献   

4.
The sunflower family (Asteraceae) is the largest and the most diverse flowering plant family, comprising 24 000–30 000 species and 1600–1700 genera. In China, Asteraceae are also the largest family, with approximately 2336 indigenous species in 248 genera. In the past two decades, molecular phylogenetic analyses has contributed greatly to our understanding of the systematics of Asteraceae. Nevertheless, the large-scale analyses and knowledge about the relationships of Chinese Asteraceae at the generic level as a whole are far from complete due to difficulties in sampling. In this study, we presented a three-marker (rbcL, ndhF, and matK) phylogeny of Asteraceae, including 506 genera (i.e., approximately one-third of Asteraceae genera). The study sampled 200 Chinese genera (i.e., approximately 80% of Chinese Asteraceae genera). The backbones of the new phylogeny were largely congruent with earlier studies, with 13 subfamilies and 45 tribes recognized. Chinese Asteraceae were distributed in 7 subfamilies (Mutisioideae, Wunderlichioideae, Carduoideae, Pertyoideae, Gymnarrhenoideae, Cichorioideae, and Asteroideae) and 22 tribes (Mutiseae, Hyalideae, Cardueae, Pertyeae, Gymnarrheneae, Vernonieae, Cichorieae, Doroniceae, Senecioneae, Astereae, Anthemideae, Gnaphalieae, Calenduleae, Inuleae, Athroismeae, Helenieae, Coreopsideae, Neurolaeneae, Tageteae, Millieae, Eupatorieae, and Heliantheae). Chinese Asteraceae lacked 6 basal subfamilies and 23 tribes. Several previously ambiguous relationships were clarified. Our analyses also resolved some unplaced genera within Chinese Asteraceae. Finally, our phylogenetic tree was used to revise the classification for all genera of Chinese Asteraceae. In total, 255 genera, 22 tribes, and 7 subfamilies in China are recognized.  相似文献   

5.
 The tribal affinities of Cratystylis and Haegiela were assessed using three chloroplast DNA sequences, the trnL/F spacer, the trnL intron and the matK coding region. The outgroup was represented by two species of the subfamily Barnadesioideae, whereas one to seven genera (45 species including Cratystylis and Haegiela) of the tribes of the Asteroideae [Anthemideae (6 genera), Astereae (7), Calenduleae (2), Gnaphalieae (7), Heliantheae s.l. (5), Inuleae s.str. (3), Plucheeae (3), Senecioneae (4)] and Cichorioideae, [Arctotideae (1), Cardueae (2), Lactuceae (2), Liabeae (1), Mutisieae (1) and Vernonieae (1)] comprise the ingroup. Phylogenetic analysis indicates that Cratystylis has strong support as a member of the tribe Plucheeae, whereas Haegiela is a member of Gnaphalieae. At some point in their taxonomic history, both genera have been placed in these tribes and there are good morphological and chemical characters that justify these placements. The monotypic Haegiela was once included in Epaltes (Plucheeae) and this study has confirmed the need for the separation of the two genera. The genus Cratystylis appears to be monophyletic. Received August 26, 2002; accepted September 19, 2002 Published online: February 7, 2003  相似文献   

6.
C-Glycosylflavones represent a special group of flavonoid glycosides both with respect to their chemical structure and presumed different biogenetic origin. Their accumulation and distribution in various plant groups has frequently been interpreted systematically; however, the application of chemotaxonomic congruence sometimes has led to incoherent results. This indicates the necessity for studying C-glycosylflavones primarily as an accumulation tendency before using them as systematic markers. Taking this into account, the distribution of C-glycosylflavones within the Compositae has been compiled and, on the basis of available data, their integration into the complete flavonoid complement analyzed. These results have been compared to those from other selected angiosperm groups, with special regard to the occurrence of certain combinations of different flavonoid glycosides with C-glycosylflavones. Despite the lack of detailed systematic surveys, the biosynthetic capacity of C-glycosylflavone accumulation in the Compositae was found to be relatively high. Mono-and di-C-glycosylflavones, including some with complex structures, are accumulated in the tribes Anthemideae, Heliantheae, Cynareae and Lactuceae. The genera of the Anthemideae and Heliantheae exhibited a very similar C-glycosylflavone profile, thus suggesting possible affinities. The tribes Eupatorieae, Astereae, Inuleae, Vernonieae and Senecioneae apparently accumulated only a small number of less complex C-glycosylflavones. Strikingly, di-C-glycosylflavones were often combined with a series of flavonoid O-glycosides, whereas predominantly C-glycosylflavone profiles showed a low percentage of co-occurring flavonoid O-glycosides. These combination trends could possibly serve as additional chemical characters. Various combination trends have been found within the angiosperms surveyed here. Mostly C-glycosylflavones co-occurred with flavonol 3-O-glycosides and (or) flavone 7-O-glycosides. Mutual exclusivity appeared to be very rare. A predominantly C-glycosylflavone pattern frequently contained a few flavonoid O-glycosides only. By comparison, the Compositae seemed to accumulate di-C-glycosylflavones as a part of a flavonolor flavone-dominated pattern to a greater extent than the other taxa studied here. Taxa accumulating C-glycosylflavones as a main tendency exhibited different degrees of specialization with respect to the substitution patterns of individual compounds. These patterns are much more conclusive than the mere presence/absence criterion. The available data suggest a reconsideration of the present dogma on flavonoid evolution. There is little evidence that C-glycosylflavones truly represent an intermediate stage in the reduction trend from flavonols to flavones. More knowledge on the biosynthesis and function(s) of C-glycosylflavones would be helpful for their interpretation as systematic features.  相似文献   

7.
Forty-five sequences from members of all genera of Asteraceae indigenous to New Zealand and 50 published sequences representing the tribal diversity in the family were analyzed to assess the utility of ITS sequences to resolve phylogenetic relationships. Previous studies using chloroplast DNA sequences and morphology provided support for several clades in the Asteraceae, yet the relationships among some of these were uncertain. The results from ITS analysis were largely consistent with these earlier studies. The New Zealand species are included in at least six clades, most of these corresponding to recognized tribes. Our results have also clarified the tribal affinities of a few anomalous genera. Haastia, previously aligned with the Gnaphalieae or the Astereae, is nested in the Senecioneae. Centipeda, previously included in the Astereae or Anthemideae, emerges near the Heliantheae. The relationships of Abrotanella remain unresolved. Received August 8, 2001 Accepted November 6, 2001  相似文献   

8.
This article contributes first genome size assessments by flow cytometry for 16 species, 12 genera, and 3 tribes from family Asteraceae, mostly belonging to the Heliantheae alliance, an assembly of 13 tribes from subfamily Asteroideae with a large majority of its species in the New World. Most genome sizes are accompanied by their own chromosome counts, confirming in most cases, although not all, previous counts for the species, and revealing possible cases of unknown dysploidy or polyploidy for certain taxa. The data contribute to the pool of knowledge on genome size and chromosome numbers in the family Asteraceae and will further allow deeper studies and a better understanding on the role of dysploidy in the evolution of the Heliantheae alliance. However, we still lack data for tribes Chaenactideae, Neurolaeneae, Polymnieae, and Feddeeae (the latter, monospecific) to complete the alliance representation.  相似文献   

9.
Anthochlors (chalcones and aurones) are found in a number of plant families including the Compositae. Within this family they were once thought to occur only in the subtribe Coreopsidinae of the tribe Heliantheae. More recent studies show them to occur also in the tribes Cardueae, Eupatorieae, Helineae, Inuleae, and Lactuceae. This has suggested that anthochlors are no longer good taxonomic markers for the Coreopsidinae. A survey of 69 of approximately 210 genera of the Heliantheae shows anthochlors present only in the Coreopsidinae except for Helianthus, Simsia, Tithonia, and Viguiera, closely related genera of the subtribe Helianthinae. Of the 32 genera of the Coreopsidinae recently recognized, 30 were surveyed from available material and all contain anthochlors except Guardiola and Venegasia. The results indicate that, despite some variation, anthochlors are still good taxonomic markers for the Coreopsidinae. This represents the only case within the family in which a particular type of flavonoid is taxonomically diagnostic at the subtribal level.  相似文献   

10.
11.
Adenocaulon andEriachaenium are two problematic genera because their tribal and subfamilial placement in Asteraceae is uncertain. Previous cladistic analyses based on molecular data undertaken to analyze the relationships within Asteraceae, placeAdenocaulon in the tribe Mutisieae (Cichorioideae). This paper investigates cladistic relationships amongAdenocaulon andEriachaenium and tribes of subfamilies Cichorioideae and Asteroideae using morphological data. Thirty-eight characters were scored across 52 genera selected as exemplar taxa to represent the current classification system. In the analysis (one tree, length = 86, c.i. = 0.55, r.i. = 0.64)Adenocaulon andEriachaenium are sister taxa and appear as an isolated clade nested in Cichorioideae. A new, tentative position among the tribes of the paraphyletic Cichorioideae is proposed for these two isolated genera.  相似文献   

12.
Partial amino acid sequences of the plastocyanins from 22 members of 8 tribes of the Compositae are separated by ancestral amino acid sequence methods into 3 groups. These groups agree generally with those of previous classifications of the species from which the plastocyanins were obtained, based mainly on morphological characters, although closer relationships between the Cichorieae and Cynareae, between the Heliantheae, Senecioneae and Calenduleae and between the Astereae and Inuleae are suggested by the sequence data.  相似文献   

13.
The phylogenetic relationships between the tribes Inuleae sensu stricto and Plucheeae are investigated by analysis of sequence data from the cpDNA gene ndhF. The delimitation between the two tribes is elucidated, and the systematic positions of a number of genera associated with these groups, i.e. genera with either aberrant morphological characters or a debated systematic position, are clarified. Together, the Inuleae and Plucheeae form a monophyletic group in which the majority of genera of Inuleae s.str. form one clade, and all the taxa from the Plucheeae together with the genera Antiphiona, Calostephane, Geigeria, Ondetia, Pechuel-loeschea, Pegolettia, and Iphionopsis from Inuleae s.str. form another. Members of the Plucheeae are nested with genera of the Inuleae s.str., and support for the Plucheeae clade is weak. Consequently, the latter cannot be maintained and the two groups are treated as one tribe, Inuleae, with the two subtribes Inulinae and Plucheinae. The genera Asteriscus, Chrysophthalmum, Inula, Laggera, Pentanema, Pluchea, and Pulicaria are demonstrated to be non-monophyletic. Cratystylis and Iphionopsis are found to belong to the same clade as the taxa of the former Plucheeae. Caesulia is shown to be a close relative of Duhaldea and Blumea of the Inuleae-Inulinae. The genera Callilepis and Zoutpansbergia belong to the major clade of the family that includes the tribes Heliantheae sensu lato and Inuleae (incl. Plucheeae), but their exact position remains unresolved. The genus Gymnarrhena is not part of the Inuleae, but is either part of the unresolved basal complex of the paraphyletic Cichorioideae, or sister to the entire Asteroideae.  相似文献   

14.
Asteraceae is the largest plant family in México with about 417 genera and 3113 species, and with more than 60% of them being endemic. Phylogenetic relationships at subfamily and tribal levels have been previously resolved employing both nuclear and plastid molecular markers. However, Asteraceae species native to Mexico have been underrepresented in such phylogenies. To tackle this issue, the taxon sampling of this study included 90 Asteraceae species native to México, four species from the Caribbean, 119 previously sequenced species, and six outgroups. With this sampling, all the Asteraceae subfamilies and all of the tribes recognized to date are represented. The analyzed dataset consisted of eleven chloroplast markers (atpB, matK, ndhC, ndhD, ndhF, ndhI, ndhJ, ndhK, rbcL, trnL-trnF, and 23S-trnA). We present two phylogenetic reconstructions obtained by maximum likelihood and pseudocoalescent methods. Besides, we present a time-calibrated phylogeny, which is used to infer the best configuration of diversification rate shifts. Our results show that Mexican species are distributed mainly in the subfamily Asteroideae (80 species), followed by Cichorioideae (6 species), Carduoideae (2 species), and Mutisioideae (2 species). Four net diversification rate shifts were found: One near the base of the tree and four within Asteroideae subfamily. Our extended sampling of the family with the representation of native species to Mexico allowed us to identify important events in the evolutionary history of the family.  相似文献   

15.
16.
The Guyana Highland-centred genera, or Stenopadus group, are a complex of species that belong to the tribes Mutisieae and Stifftieae of Asteraceae. The pollen morphologies of 29 species, from 12 of 13 genera of this complex, are described and illustrated using light and scanning electron microscopy. The exine sculpture and structure are highly significant. Four exine types, previously characterized, were distinguished: Gongylolepis , Wunderlichia , Mutisia , and Stenopadus . The characterization of the Stenopadus exine type is enlarged here. These exine types led to the recognition of four well-defined pollen types, whereas the spine length and exine thickness characterized six subtypes. Pollen types circumscribe genera or groups of genera, and some subtypes distinguish species. The pollen morphology within the complex is discussed in relation to the rest of Mutisioideae and other palynologically allied tribes of Cichorioideae. There is little correlation between pollen types and tribes; only the Stenopadus exine type is exclusive to the Stifftieae tribe. The remaining types are shared by the two tribes of the complex. Pollen morphology supports the hypothesis that this group of genera is close to the Gochnatia complex and the Cardueae tribe.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 327–340.  相似文献   

17.
The mode of germination of representatives of 89 genera of the Cactaceae, 4 genera of Portulacaceae and 1 genus of Phytolaccaceae was studied. Most of the species of the Cactaceae germinate by means of a seed lid (operculum). In the Cactaceae studied 11 kinds of germination could be distinguished, 3 of which were with, and 8 without, operculum formation.
Opercula are restricted in their occurrence to the subfamilies Cactoideae (Cereoideae) and Pereskioideae and are not found in the subfamily Opuntioideae. Within the subfamily Cactoideae operculum formation was found to occur in all tribes and in all investigated subtribes. Opercula were also found in two genera of the related family of the Portulacaceae. In the Phytolaccaceae no operculum formation was observed.  相似文献   

18.
Vernonieae is one of the major tribes in Asteraceae (subfamily Cichorioideae) with ca. 1,100 species placed into 129 genera. Currently, 21 subtribes are recognized in Vernonieae and one of them is Lychnophorinae, almost entirely endemic to Brazil, containing 11 genera and ca. 100 species. About 42 % of Lychnophorinae genera are monophyletic, reflecting the poorly understood relationships among the members of the group. Trichomes are one of the most useful anatomical characters to be used in angiosperm taxonomy; they are diverse, exist in many taxa and are not difficult to study. This work intends to illustrate non-glandular leaf trichome diversity in Lychnophorinae and discuss this diversity in the light of the subtribe’s taxonomy. Sampled material included 67 species of 11 genera. Macerations and free hand sections were performed to be analyzed in the light microscope and photographed. A phenogram was generated using a matrix with 67 terminals (species) and 18 characters coded as binary. The subtribe Lychnophorinae displays a great diversity of non-glandular trichomes (5 types and 18 subtypes). The present study reveals the great diversity of non-glandular trichomes in Lychnophorinae. While trichome complement is of little use to distinguish genera, it appears to be a valuable characteristic at a lower taxonomic level to identify closely morphologically related species.  相似文献   

19.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

20.
中国菊科植物的系统分类与区系的初步研究   总被引:31,自引:2,他引:29  
林有润 《植物研究》1997,17(1):6-27
为1993年"菊科植物的系统分类与区系地理的初步探讨"(世界)一文的姊妹篇,重点论述我国菊科的系统分类及其区系地理成分。文中介绍了分布我国的菊科240属隶于2亚科、5超族、11族中的系统位置。论述了我国菊科植物区系地理成分的特点是:1.大洲间共同分布或洲际间断分布的属多,且具明显的热带亲缘;2.与亚洲国家,包括中亚国家或亚洲热带国家共同分布的属多,尤其是成"中亚-青藏高原-喜马拉雅山"地区分布的属多;3.中国特有属多,其中我国西南省区特有属最多。文中还讨论了分布我国菊科各族祖先种的起源、迁移以及我国区系地理热带亲缘和"横断山脉-喜马拉雅山脉(东)森林植物亚区"菊科植物分布的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号