首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Maruta  K Inageda  T Aoki  H Nishina  S Tanuma 《Biochemistry》1991,30(24):5907-5912
A poly(ADP-ribose) glycohydrolase from guinea pig liver cytoplasm has been purified approximately 45,000-fold to apparent homogeneity. The cytoplasmic poly(ADP-ribose) glycohydrolase designated form II differed in several respects from the nuclear poly(ADP-ribose) glycohydrolase I (Mr = 75,500) previously purified from the same tissue (Tanuma et al., 1986a). The purified glycohydrolase II consists of a single polypeptide with Mr of 59,500 estimated by a sodium dodecyl sulfate-polyacrylamide gel. A native Mr of 57,000 was determined by gel permeation. Peptide analysis of partial proteolytic degradation of glycohydrolases II and I with Staphylococcus aureus V8 protease revealed that the two enzymes were structurally different. Amino acid analysis showed that glycohydrolase II had a relatively low proportion of basic amino acid residues as compared with glycohydrolase I. Glycohydrolase II and I were acidic proteins with isoelectric points of 6.2 and 6.6, respectively. The optimum pH for glycohydrolases II and I were around 7.4 and 7.0, respectively. The Km value for (ADP-ribose)n (average chain length n = 15) and the Vmax for glycohydrolase II were 4.8 microM and 18 mumol of ADP-ribose released from (ADP-ribose)n.min-1.(mg of protein)-1, respectively. The Km was about 2.5 times higher, and Vmax 2 times lower, than those observed with glycohydrolase I. Unlike glycohydrolase I, glycohydrolase II was inhibited by monovalent salts. ADP-ribose and cAMP inhibited glycohydrolase II more strongly than glycohydrolase I. These results suggest that eukaryotic cells contain two distinct forms of poly(ADP-ribose) glycohydrolase exhibiting differences in properties and subcellular localization.  相似文献   

2.
1. Two forms of phosphorylase kinase having mol. wt of 1,260,000 (form I) and 205,000 (form II) have been identified by gel filtration chromatography of rabbit liver crude extracts. 2. Form I was the majority when the homogenization buffer was supplemented with a mixture of proteinase inhibitors. This form has been purified through a protocol including ultracentrifugation, gel filtration and affinity chromatography on Sepharose-heparin. 3. Form II was purified by a combination of chromatographic procedures including ion exchange, gel filtration and affinity chromatography on Sepharose-Blue Dextran and Sepharose-histone. 4. Upon electrophoresis in the presence of sodium dodecyl sulfate two subunits of 69,000 and 44,000 were identified for this low molecular weight enzyme. Thus, a tetrameric structure comprising two subunits of each kind can be proposed. 5. Treatment of form I with either trypsin or chymotrypsin gave an active fragment having a molecular weight similar to that of form II. On the contrary, other dissociating treatments with salts, thiols and detergents failed in producing forms of lower molecular weight. 6. The similarities between proteolyzed forms I and II were stressed by their behavior in front of antibodies raised against the muscle isoenzyme of phosphorylase kinase. 7. The study of the effect of magnesium and fluoride ions on the activity of both forms showed an inhibitory effect of magnesium when its concentration exceeded that of ATP. 8. The inhibition could nevertheless be reverted by including 50 mM NaF in the reaction mixture. 9. Form I and form II could be distinguished by their pH dependence in the presence of an excess of magnesium ions over ATP, whereas the affinity for both substrates was not significantly different.  相似文献   

3.
Purification and characterization of two forms of rat interleukin-2   总被引:1,自引:0,他引:1  
Rat IL-2 produced by spleen cells in culture with concanavalin A was purified using gel filtration, hydrophobic chromatography, and ion-exchange chromatography. At least two forms of rat IL-2 were found to be separable by ion-exchange chromatography. These two forms have been designated form I and form II. Form I of rat IL-2 was purified by a factor of 1297 and found to have a pI of 6.4. Form II was purified by a factor of 669 and found to have a pI between 5.4 and 6.1. Lectin chromatography was used to demonstrate that these two forms most likely differ in the extent of glycosylation. In the presence of tunicamycin the production of form II was significantly reduced. The two forms of rat IL-2 differ in their abilities to promote a mixed-lymphocyte reaction. Their differences in glycosylation may be the reason for these differences in activity.  相似文献   

4.
H Masui  M Satoh    T Satoh 《Journal of bacteriology》1994,176(6):1624-1629
Spheroplasts prepared from a molybdenum cofactor-deficient mutant of Rhodobacter sphaeroides f. sp. denitrificans secreted dimethyl sulfoxide (DMSO) reductase which had no molybdenum cofactor and therefore no activity, whereas those from wild-type cells secreted the active reductase. The inactive DMSO reductase proteins were separated by nondenaturing electrophoresis into two forms: form I, with the same mobility as the native enzyme, and form II, with slower mobility. Both forms had the same mobility on denaturing gel. Form I and active DMSO reductase had the same profile on gel filtration chromatography. Form II was eluted a little faster than the native enzyme, suggesting that DMSO reductase form II was not an aggregated form but a compactly folded form very similar to the native enzyme. Form II was digested by trypsin and denatured with urea, whereas form I was unaffected, like native DMSO reductase. These results suggested that form II was a partially unfolded but compactly folded apoprotein of DMSO reductase.  相似文献   

5.
Lantadene A (22 beta-angeloyloxy-3-oxo-olean-12-en-28-oic acid), a pentacyclic triterpenoid compound from lantana (Lantana camara) leaves has been obtained in two polymorphic forms I and II. Form I had white, fluffy, and rod-shaped uniform crystals. Form II particles were irregular, shining, and polyhedral. The two forms differed in melting behavior. The powder x-ray diffraction of form I showed sharp peaks whereas from II did not contain distinct peaks. From single-crystal three-dimensional x-ray structure determination, the molecular structure of form I has been established. A/B and B/C rings of the molecule are trans fused while D/E rings are cis fused. The packing of the molecule is stabilized by hydrogen bonding. Form I of lantadene A was non-toxic to guinea pigs on oral administration. Form II induced ictericity and toxicity associated with decrease in feed intake and fecal output, hepatomegaly, increase in plasma bilirubin, and acid phosphatase activity.  相似文献   

6.
As relatively little information is available on the properties of aspartate aminotransferase from photosynthetic tissue, isolation and characterization of the two major electrophoretically distinct forms of this enzyme from seedling oat leaf homogenates were undertaken. These two forms are designated I for the more anionic form and II for the less anionic form. Form I, 80 to 90% of the total activity, has been purified to a specific activity of 120 mumol/min/mg of protein (1100-fold) and is estimated to be 90 to 95% homogeneous, as judged by analytical polyacrylamide gel electrophoresis. Form II, 10 to 20% of the total activity, has been purified to a specific activity of approximately 6 mumol/min/mg of protein (300-fold). Both forms exhibit optimal activity at pH 7.5. Michaelis constants do not differ greatly between forms I and II and are similar to those reported for the pig heart cytosolic enzyme as well as aspartate aminotransferase from other plant sources. A molecular weight of 130,000 for the purified aspartate aminotransferase I was estimated by sedimentation equilibrium centrifugation; molecular weights of the two forms are similar as estimated by sucrose density gradient centrifugation. No activation by pyridoxal phosphate has been observed during purification.  相似文献   

7.
Allosteric activation of pyruvate kinase from a thermophilic bacterium, Bacillus stearothermophilus, by ribose 5-phosphate (R5P) was kinetically examined. Two activated forms of this enzyme could be distinguished, depending on the R5P concentration. One form (Form I) was observed at about 10(-5) M R5P. It showed a slightly negative cooperativity for phosphoenolpyruvate (PEP). The other form (Form II) was observed at more than 10(-3) M R5P and showed Michaelis-Menten kinetics for PEP. The PEP and ADP concentrations that yield half-maximal velocity were essentially identical for the two forms (about 0.1 and about 0.5 mM, respectively), but Form I had a larger Vmax value than Form II. In the absence of R5P, the enzyme showed a homotropic positive cooperativity for PEP; the concentration required for the half-maximal velocity was about 2 mM and that of ADP was about 1.6 mM. The enzyme was more susceptible to protease digestion in the presence of R5P than in the absence of it. The concentration of R5P required for the enzyme to be susceptible to protease digestion was approximately identical with that required to generate Form I. With more than 10(-3) M R5P, the thermostability of the enzyme was greatly increased. The concentration of R5P required for the enzyme to be thermostable was in good agreement with that required to generate Form II. These results indicate that the two activated forms distinguished kinetically differ in their conformations, too. The saturating level of PEP did not cause such a change in the thermostability or the susceptibility to protease.  相似文献   

8.
The beta-glucuronidase activity of Drosophila melanogaster exists as two chromatographically separable forms, both of which are glycoproteins. Form I is membrane-bound in vivo, has a pI of 8.0-8.5, and can be irreversibly inactivated either by incubation at 55 degrees C for 20 min or by incubation at 37 degrees C in the presence of 6 M urea. Form II exists both membrane-bound as well as membrane-free, has a pI of 4.5, and is resistant to the conditions which inactivate form I. The two forms are similar in Km and Vmax for the artificial substrate 4-methylumbelliferyl-beta-D-glucuronide and both forms are precipitated by antibody to form II. A natural genetic variant, beta-GluL1, completely lacks from I beta-glucuronidase. This variant behaves in a co-dominant fashion for the determination of the presence of form I and has been localized to the extreme distal portion of chromosome 3R. Other data indicate that at least one genetic determinant for the amount of form II is also localized to this portion of chromosome 3R.  相似文献   

9.
Two forms of the DNA polymerase of bacteriophage T7   总被引:8,自引:0,他引:8  
The DNA polymerase induced by bacteriophage T7 can be isolated in two different forms. The distinguishing properties are: 1) the specific activities of the associated 3' to 5' single- and double-stranded DNA exonuclease activities, 2) the ability to catalyze DNA synthesis and strand displacement at nicks, and 3) the degree of stimulation of DNA synthesis on nicked, duplex DNAs by the gene 4 protein of phage T7. Form I is obtained when purification is carried out in the absence of EDTA while Form II is obtained if all purification steps are carried out in the presence of 0.1 mM EDTA. Form I has low levels of both exonuclease activities, less than 5% of those of Form II. Form I can initiate DNA synthesis at nicks leading to strand displacement, a consequence of which is its ability to be stimulated manyfold by the helicase activity of gene 4 protein on nicked, duplex templates. On the other hand, Form II cannot initiate synthesis at nicks even in the presence of gene 4 protein. In keeping with its higher exonuclease activities, Form II of T7 DNA polymerase has higher turnover of nucleotides activity (5-fold higher than Form I) and exhibits greater fidelity of nucleotide incorporation, as indicated by the rate of incorporation of 2-aminopurine deoxynucleoside monophosphate. Both forms of T7 DNA polymerase exhibit higher fidelity of nucleotide incorporation than bacteriophage T4 DNA polymerase. In the absence of EDTA or in the presence of FeSO4 or CaCl2, Form II irreversibly converts to Form I. The physical difference between the two forms is not known. No difference in molecular weight can be detected between the corresponding subunits of each form of T7 DNA polymerase as measured by gel electrophoresis in the presence of sodium dodecyl sulfate.  相似文献   

10.
A new polymorph α of indiplon was discovered, initially prepared by two methods, and further characterized by various means including single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), variable temperature powder X-ray diffraction (VT-PXRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), Fourier transform Raman (FT-Raman) spectroscopy and solubility determination. The crystal structure of Form α as analyzed by SCXRD differ from the three previously reported polymorphs, Form I, II, and III. In addition, PXRD and solubility measurements could clearly distinguish between Form α and Form I. Slight differences between the two forms were also detected by FT-Raman. No differences between Form α and I were observed by DSC, which was explained by VT-PXRD results showing a solid-solid phase change from Form α to Form I during the heating process. Solubility measurements at various temperatures showed that the two polymorphs were mutually monotropic and that Form I was the relatively thermodynamically stable crystal form.  相似文献   

11.
G D Fasman 《Biopolymers》1966,4(5):509-519
Poly-O-acetyl-hydroxy-L -proline, forms I and II have been studied by optical rotatory dispersion (ORD) and ultraviolet spectrophotometry in solution and in the solid state. Cotton effects of opposite sign, but not mirror images, were observed in the 250 mμ region for the two forms (Form I, peak 278 mμ; crossover, 254 mμ; trough, 244 mμ: Form II, trough 270 mμ; crossover, 248 mμ; peak, 238 mμ). Thus, the Cotton effects for a right-handed and left-handed helix have been shown to be opposite for the proline type helices I and II. The ORD of films of form I was found to have a positive Cotton effect further into the ultraviolet region with peak at 218 mμ. Absorption spectra showed a shift of 8 mμ in the absorption peak in the 200 mμ region for the two forms (form. I, 211 mμ; form II, 203 mμ). A shoulder was demonstrated in the film absorption spectra in the 250 mμ region where the Cotton effects are found. The mixing of the n, π* and π, π* states of the amide chromophore and n, π* state of the ester chromophore was suggested as being responsible for the Cotton effects in the 250 mμ region.  相似文献   

12.
Multiple forms of myeloperoxidase from normal human neutrophilic granulocytes obtained from a single donor can be resolved by carboxymethyl (CM)-cellulose ion-exchange column chromatography into three forms (I, II, and III) designated in order of elution of adsorbed enzyme using a linear salt gradient. Selective solubilization of individual forms of the enzyme by detergent (form I) or high-ionic-strength procedures (forms II and III) suggested that these forms of the enzyme were compartmentalized differently. All three forms were purified by a combination of preferential extraction, manipulation of ionic strength, and ion-exchange and molecular sieve chromatography. Purified forms II and III had similar specific activities for a variety of substrates. Form I was less active toward several of these same substrates, most notably iodide, with a specific activity about one-half that of forms II and III. All forms had similar spectral properties characteristic of a type alpha heme. The amino acid compositions of the three forms were similar, yet significant differences were found in selected residues such as the charged amino acids. Native polyacrylamide gel electrophoresis resolved small differences in mobility between the forms which were consistent with the charge heterogeneity observed on CM-cellulose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis data were consistent with the generally accepted subunit structure of two heavy chains and two light chains. All three forms contained a small-molecular-weight subunit of Mr 11,500. Form I contained a large subunit of Mr 63,000, while forms II and III contained a corresponding subunit of Mr approximately 57,500. We conclude that heterogeneity of human myeloperoxidase is accompanied by differences in cellular compartmentalization, enzymatic activity, and subunit structure.  相似文献   

13.
Three forms of cathepsin H-like cysteine proteinase were purified from rat spleen by a method involving acid treatment and chromatography on pepstatin-Sepharose, Sephadex G-75, DEAE-Sephacel, CM-Toyopearl, and concanavalin A-Sepharose. The final preparations of these forms all migrated as single protein bands on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate (SDS). The molecular weights of the three forms were estimated to be 28,000 (form I), 26,000 (form II), and 22,000 (form III). The optimal pH was 6.5 for forms I and III and was 7.0 for form II with L-leucine 2-naphthylamide (Leu-NA) or with alpha-N-benzoyl-DL-arginine 2-naphthylamide (BANA). All of the forms consisted of two major species having isoelectric points of 7.1 and 6.5 on isoelectric focusing gels. They were all stable when incubated at pH values between 5.0 and 9.0 for 1 h at 22 degrees C. They were strongly inhibited by iodoacetic acid and E-64, but not by metal ions or pepstatin. Form III was not affected by leupeptin, chymostatin, antipain or elastatinal, which gave essentially complete inhibition of cathepsin B purified from rat spleen. Forms I and II were slightly inhibited by these compounds at the same concentrations. The properties of these forms were compared with those of the known enzymes cathepsin H and BANA-hydrolase.  相似文献   

14.
The psbA multigene family in Synechococcus sp. strain PCC 7942 encodes two forms of the D1 protein; Form I, the product of psbAI, differs from Form II, the product of psbAII and psbAIII, at 25 of 360 amino acid positions. D1 is essential for photosynthesis as a protein component of the photosystem II reaction center. Antisera were raised against purified hybrid proteins encoded by psbAI-lacZ and psbAIII-lacZ translational gene fusions that contain the unique amino termini of Form I and Form II, respectively. Form specificity of each antiserum was verified by Western analysis using thylakoid membranes from mutant strains containing only Form I or Form II. Western analysis of thylakoid membranes from wild-type cells cultured at different light intensities detected both forms of D1 in the membrane and showed changes in the ratio of the two forms. The D1 composition of the membrane matched predicted ratios of the forms based on differential gene expression: psbAI is expressed highest at low light, and both psbAII and psbAIII are expressed highest at high light. Along a gradient of light intensity from 5 microE. m-2.s-1 to 482 microE.m-2.s-1, the relative amount of Form I in thylakoid membranes decreased 58%, while the relative amount of Form II increased 60%. Maximum detection of Form I coupled with minimum detection of Form II in membranes from cells harvested at light intensities below 390 microE.m-2.s-1 suggests a central role for Form I in photosystem II. Increased incorporation of Form II into the thylakoid membrane occurred at light intensities reported by others to be photoinhibitory, suggesting that Form II serves a role in adaptation to high light.  相似文献   

15.
To determine how the androgen binding protein in human testes (hABP) is related to the serum protein, testosterone-estradiol binding globulin (hTeBG), both proteins were isolated and compared. The hABP in extracts of human testes was composed of two molecular species based on concanavalin A (ConA)-Sepharose chromatography. Form I hABP did not interact with ConA while Form II hABP bound to ConA and eluted with alpha-methylmannoside. Form I and Form II hABP from five batches of testes were then purified approximately 30,500- and 30,000-fold to apparent homogeneity by high-performance liquid chromatography and compared with hTeBG isolated from human pregnancy serum. Fractionation of both forms of hABP and hTeBG by polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate suggested that the native forms of these proteins were indistinguishable. However, analysis of the purified proteins on sodium dodecyl sulfate-containing polyacrylamide gels indicated that all three were dimers and that each was composed of monomers of at least two sizes which were not present in equimolar concentrations. Two distinctive monomers or protomers of each protein were designated as heavy (H) and light (L) according to their electrophoretic mobilities on sodium dodecyl sulfate-polyacrylamide gels. The H and L protomers of Form I hABP showed apparent molecular weights of 55,000 and 52,000, respectively, in all preparations and were usually present in a 4:5 ratio (H:L). The two components of Form II hABP had apparent molecular weights of 53,000 and 48,000, respectively, and existed in a ratio of approximately 20:1. These two components could not be distinguished in some preparations where Form II hABP migrated as a broad band rather than as distinct protomers. By contrast, hTeBG, which was similar to Form II hABP with respect to ConA binding, always exhibited discrete H and L protomers in a 10:1 ratio. Photolysis of these highly purified proteins with delta 6-[3H]testosterone resulted in specific covalent labeling of their binding sites, confirming that the products identified by silver staining and immunoblotting were indeed steroid binding proteins. The H and L protomers of Form I hABP and hTeBG were separated and examined by peptide mapping using Staphylococcus aureus protease V8 and chymotrypsin. The comparison of the respective fragmentation patterns of protomers indicated that Form I hABP and hTeBG contained distinctive peptides.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Changes of DNA Ligases in Chick Neural Retina as a Function of Age   总被引:2,自引:0,他引:2  
In the course of chick neural retina development, several forms of DNA ligase have been found. During embryonic life the major DNA ligase activity that is found at seven days is form I (8.2 S) which gradually decreases and disappears by 14 days after incubation, whereas form II (6.2 S) increases to reach a maximum at the time of hatching. Form II then decreases reaching a constant level by Day 7 and from that time new slow sedimenting forms also appear (forms III and IV). Form III (2 S) is first detectable at seven days and increases up to 90 days, whereas form IV (3 S) is the only form detected in the 17- and 18-month-old and also in the 5-year-old birds. These four forms display different elution patterns on phosphocellulose column chromatography. They also differ in their thermal stability and sensitivity towards N-ethylmaleimide.  相似文献   

17.
In the course of chick neural retina development, several forms of DNA ligase have been found. During embryonic life the major DNA ligase activity that is found at seven days is form I (8.2 S) which gradually decreases and disappears by 14 days after incubation, whereas form II (6.2 S) increases to reach a maximum at the time of hatching. Form II then decreases reaching a constant level by Day 7 and from that time new slow sedimenting forms also appear (forms III and IV). Form III(2 S) is first detectable at seven days and increases up to 90 days, whereas form IV (3 S) is the only form detected in the 17- and 18-month-old and also in the 5-year-old birds. These four forms display different elution patterns on phosphocellulose column chromatography. They also differ in their thermal stability and sensitivity towards N-ethylmaleimide.  相似文献   

18.
Two forms (I and II) of alpha-D-mannosidase have been separated by ion-exchange chromatography on DEAE-cellulose from embryonic chicken liver. A third form (III), which is absent in embryos, was also separated from 4-day-old chickens. The optimum pH of form I is at pH 5.0. Form II is named "neutral" because it shows maximal activity at pH 6.5. The optimum pH of form III is 4.5. Forms I and III are heat-stable at 50 degrees C for 1 hr, whereas form II is very unstable under these conditions. Zn2+ and Mg2+ have been found to increase the alpha-D-mannosidase activity of forms I and II. In contrast, Co2+ increases mannosidase I activity and inhibits form II from 18-day-old embryos. alpha-Methyl-D-mannoside, N-acetyl-D-mannosamine and D-mannosamine were found to be inhibitors of both forms I and II. "Neutral" mannosidase was also inhibited by chloride. Competitive inhibition by D-mannose was also studied and Ki values are given.  相似文献   

19.
The purpose of this study was to elucidate the formation of crystal hydrates of niclosamide and to delineate the effect of relative humidity on the crystal forms obtained from acetone and ethyl acetate. Recrystallization of niclosamide was performed in the presence and absence of moisture. Two hydrates and their corresponding anhydrates were isolated. The hydrates obtained by the process of recrystallization from acetone (Form I) and that obtained from ethyl acetate (Form II) were classified based on differences in their dehydration profile, crystal structure, shape, and morphology. Crystals obtained in the absence of moisture were unstable, and when exposed to the laboratory atmosphere transformed to their corresponding hydrates. Differential scanning calorimetry thermograms indicate that Form I changes to an anhydrate at temperatures below 100°C, while Form II dehydrates in a stepwise manner above, 140°C. This finding was further confirmed by thermogravimetric analysis. Dehydration of Form II was accompanied by a loss of structural integrity, demonstrating that water molecules play an important role in maintaining its crystal structure. Form I, Form II, and the anhydrate of Form II showed no significant moisture sorption over the entire range of relative humidity. Although the anhydrate of Form I did not show any moisture uptake at low humidity, it converted to the monohydrate at elevated relative humidity (>95%). All forms could be interconverted depending on the solvent and humidity conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号