首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Lactoferrin is an 80 kDa iron binding protein found in the secretory fluids of mammals and it plays a major role in host defence. An antimicrobial peptide, lactoferrampin, was identified through sequence analysis of bovine lactoferrin and its antimicrobial activity against a wide range of bacteria and yeast species is well documented. In the present work, the contribution of specific amino acid residues of lactoferrampin was examined to evaluate the role that they play in membrane binding and bilayer disruption. The structures of all the bovine lactoferrampin derivatives were examined with circular dichroism and nuclear magnetic resonance spectroscopy, and their interactions with phospholipids were evaluated with differential scanning calorimetry and isothermal titration calorimetry techniques. From our results it is apparent that the amphipathic N-terminal helix anchors the peptide to membranes with Trp 268 and Phe 278 playing important roles in determining the strength of the interaction and for inducing peptide folding. In addition, the N-terminal helix capping residues (DLI) increase the affinity for negatively charged vesicles and they mediate the depth of membrane insertion. Finally, the unique flexibility in the cationic C-terminal region of bovine lactoferrampin does not appear to be essential for the antimicrobial activity of the peptide.  相似文献   

2.
The antimicrobial activity of bovine lactoferrin (bLF) is attributed to lactoferricin, which is situated in the N1-domain of bLF. Recently, another antimicrobial domain consisting of residues 268-284, designated lactoferrampin (LFampin), has been identified in the N1-domain of bLF, which exhibited antimicrobial activity against Candida albicans and several bacteria. In the present study, the candidacidal activity of a series of peptides spanning this antimicrobial domain was investigated in relation to the charge and the capacity to form a helical conformation in hydrophobic environments. C-Terminal truncation of LFampin resulted in a drastic decrease in candidacidal activity. Positively charged residues clustered at the C-terminal side of the LFampin domain appeared to be crucial for the candidacidal activity. The ability to adopt helical conformations did not change when LFampin was truncated at the C-terminal side. N-Terminally truncated LFampin peptides, truncated up to the sequence 270-284, were more reluctant to adopt a helical conformation. Therefore, we conclude that the C-terminal part of LFampin 265-284, which is the most active peptide, is crucial for its candidacidal activity, due to the presence of clustered positive charges, and that the N-terminal part is essential for activity as it facilitates helix formation.  相似文献   

3.
Bovine lactoferrampin (LFampinB) has been identified as a novel antimicrobial peptide, which is derived from the N-terminal lobe of bovine lactoferrin. In this study, the solution structure of LFampinB bound to negatively charged sodium dodecyl sulphate micelles and zwitterionic dodecyl phosphocholine micelles was determined using 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. The interaction between LFampinB and multilamellar phospholipid vesicles, containing choline and glycerol head groups, was examined using differential scanning calorimetry (DSC). In addition, the interaction between the N-terminal tryptophan residue and model membranes of varying composition was analyzed by fluorescence spectroscopy. LFampinB adopts an amphipathic alpha-helical conformation across the first 11 residues of the peptide but remains relatively unstructured at the C-terminus. The hydrophobic surface of the amphipathic helix is bordered by the side chains of Trp1 and Phe11, and is seen in both micelle-bound structures. The fluorescence results suggest that Trp1 inserts into the membrane at the lipid/water interface. The phenyl side chain of Phe11 is oriented in the same direction as the indole ring of Trp1, allowing these two residues to serve as anchors for the lipid bilayer. The DSC results also indicate that LFampinB interacts with glycerol head groups in multilamellar vesicles but has little effect on acyl chain packing. Our results support a two step model of antimicrobial activity where the initial attraction of LFampinB is mediated by the cluster of positive charges on the C-terminus followed by the formation of the N-terminal helix which binds to the surface of the bacterial lipid bilayer.  相似文献   

4.
Bovine lactoferrampin (LFampinB) has been identified as a novel antimicrobial peptide, which is derived from the N-terminal lobe of bovine lactoferrin. In this study, the solution structure of LFampinB bound to negatively charged sodium dodecyl sulphate micelles and zwitterionic dodecyl phosphocholine micelles was determined using 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. The interaction between LFampinB and multilamellar phospholipid vesicles, containing choline and glycerol head groups, was examined using differential scanning calorimetry (DSC). In addition, the interaction between the N-terminal tryptophan residue and model membranes of varying composition was analyzed by fluorescence spectroscopy. LFampinB adopts an amphipathic alpha-helical conformation across the first 11 residues of the peptide but remains relatively unstructured at the C-terminus. The hydrophobic surface of the amphipathic helix is bordered by the side chains of Trp1 and Phe11, and is seen in both micelle-bound structures. The fluorescence results suggest that Trp1 inserts into the membrane at the lipid/water interface. The phenyl side chain of Phe11 is oriented in the same direction as the indole ring of Trp1, allowing these two residues to serve as anchors for the lipid bilayer. The DSC results also indicate that LFampinB interacts with glycerol head groups in multilamellar vesicles but has little effect on acyl chain packing. Our results support a two step model of antimicrobial activity where the initial attraction of LFampinB is mediated by the cluster of positive charges on the C-terminus followed by the formation of the N-terminal helix which binds to the surface of the bacterial lipid bilayer.  相似文献   

5.
Maculatin 1.1 (Mac) is a cationic antibacterial peptide isolated from the dorsal glands of the tree frog, Litoria genimaculata, and has a sequence of GLFGVLAKVAAHVVPAIAEHF-NH2. A short peptide lacking the N-terminal two residues of Mac was reported to have no activity. To investigate the structure-activity relationship in detail, several analogs and related short peptides of Mac were synthesized. CD measurement showed that all the peptides took more or less an alpha-helical structure in the presence of anionic lipid vesicles. Analogs which are more basic than Mac had strong antibacterial and hemolytic activities, while short peptides lacking one or two terminal residues exhibited weak or no activity. Outer and inner membrane permeabilization activities of the peptides were also reduced with shortening of the peptide chain. These results indicate that the entire chain length of Mac is necessary for full activity, and the basicity of the peptides greatly affects the activity.  相似文献   

6.
Synthetic peptides derived from human and bovine lactoferricin, as well as tritrpticin sequences, were assayed for antimicrobial activity against wild-type Escherichia coli and LPS mutant strains. Antimicrobial activity was only obtained with peptides derived from the bovine lactoferricin sequence and peptides corresponding to chimeras of human and bovine sequences. None of the peptides corresponding to different regions of native human lactoferricin showed any antimicrobial activity. The results underline the importance of the content of tryptophan and arginine residues, and the relative location of these residues for antimicrobial activity. Results obtained for the same assays performed with LPS mutants suggest that lipid A is not the main binding site for lactoferricin which interacts first with the negative charges present in the inner core. Computer modelling of the most active peptides led to a model in which positively charged residues of the cationic peptide interact with negative charges carried by the LPS to disorganise the structure of the outer membrane and facilitate the approach of tryptophan residues to the lipid A in order to promote hydrophobic interactions.  相似文献   

7.
The dermaseptins S are closely related peptides with broad-spectrum antibacterial activity that are produced by the skin of the South American hylid frog, Phyllomedusa sauvagei. These peptides are polycationic (Lys-rich), alpha-helical, and amphipathic, with their polar/charged and apolar amino acids on opposing faces along the long axis of the helix cylinder. The amphipathic alpha-helical structure is believed to enable the peptides to interact with membrane bilayers, leading to permeation and disruption of the target cell. We have identified new members of the dermaseptin S family that do not resemble any of the naturally occurring antimicrobial peptides characterized to date. One of these peptides, designated dermaseptin S9, GLRSKIWLWVLLMIWQESNKFKKM, has a tripartite structure that includes a hydrophobic core sequence encompassing residues 6-15 (mean hydrophobicity, +4.40, determined by the Liu-Deber scale) flanked at both termini by cationic and polar residues. This structure is reminiscent of that of synthetic peptides originally designed as transmembrane mimetic models and that spontaneously become inserted into membranes [Liu, L., and Deber, C. M. (1998) Biopolymers 47, 41-62]. Dermaseptin S9 is a potent antibacterial, acting on gram-positive and gram-negative bacteria. The structure of dermaseptin S9 in aqueous solution and in TFE/water mixtures was analyzed by circular dichroism and two-dimensional NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin S9 is aggregated in water, but a monomeric nonamphipathic alpha-helical conformation, mostly in residues 6-21, is stabilized by the addition of TFE. These results, combined with membrane permeabilization assays and surface plasmon resonance analysis of the peptide binding to zwitterionic and anionic phospholipid bilayers, demonstrate that spatial segregation of hydrophobic and hydrophilic/charged residues on opposing faces along the long axis of a helix is not essential for the antimicrobial activity of cationic alpha-helical peptides.  相似文献   

8.
Seminalplasmin (SPLN) is a 47-residue protein isolated from bovine seminal plasma having potent antimicrobial activity against a broad spectrum of microorganisms. SPLN, also known as caltrin, acts as a calcium transport regulator in bovine sperms. Analysis of the sequence of SPLN reveals a 27-residue stretch with the sequence SLSRYAKLANRLANPKLLETFLSKWIG more hydrophobic than the rest of the protein. It is demonstrated that a synthetic peptide corresponding to this 27-residue segment has antimicrobial activity comparable to that of SPLN. It does not exhibit hemolytic activity at concentrations where antibacterial activity is observed. Since P27 can be conveniently obtained in large amounts by chemical synthesis, it could serve not only as a starting compound to obtain peptides with improved antibacterial activity but also to understand the role of SPLN in reproductive physiology.  相似文献   

9.
The 3D structure of the membrane-permeabilizing 41-mer pediocin-like antimicrobial peptide curvacin A produced by lactic acid bacteria has been studied by NMR spectroscopy. In DPC micelles, the cationic and hydrophilic N-terminal half of the peptide forms an S-shaped beta-sheet-like domain stabilized by a disulfide bridge and a few hydrogen bonds. This domain is followed by two alpha-helices: a hydrophilic 6-mer helix between residues 19 and 24 and an amphiphilic/hydrophobic 11-mer helix between residues 29 and 39. There are two hinges in the peptide, one at residues 16-18 between the N-terminal S-shaped beta-sheet-like structure and the central 6-mer helix and one at residues 26-28 between the central helix and the 11-mer C-terminal helix. The latter helix is the only amphiphilic/hydrophobic part of the peptide and is thus presumably the part that penetrates into the hydrophobic phase of target-cell membranes. The hinge between the two helices may introduce the flexibility that allows the helix to dip into membranes. The helix-hinge-helix structure in the C-terminal half of curvacin A clearly distinguishes this peptide from the other pediocin-like peptides whose structures have been analyzed and suggests that curvacin A along with the structural homologues enterocin P and carnobacteriocin BM1 belong to a subgroup of the pediocin-like family of antimicrobial peptides.  相似文献   

10.
A model peptide, FKCRRWQWRMKKLGA, residues 17-31 of bovine lactoferricin, has been subjected to structure-antibacterial activity relationship studies. The two Trp residues are very important for antibacterial activity, and analogue studies have demonstrated the significance of the size, shape and aromatic character of the side chains. In the current study we have replaced Trp residues in the model peptide with bulky aromatic amino acids to elucidate further the importance of size and shape. The counterproductive Cys residue in position 3 was also replaced by these aromatic amino acids. The largest aromatic amino acids employed resulted in the most active peptides. The peptides containing these hydrophobic residues were generally more active against Staphylococcus aureus than against Escherichia coli, indicating that the bacterial specificity as well as the antibacterial efficiency can be altered by employing large hydrophobic aromatic amino acid residues.  相似文献   

11.
To understand the functional differences between a nontoxic membrane anchor corresponding to the N-terminal sequence of the Escherichia coli enzyme IIA(Glc) and a toxic antimicrobial peptide aurein 1.2 of similar sequence, a series of peptides was designed to bridge the gap between them. An alteration of a single residue of the membrane anchor converted it into an antibacterial peptide. Circular dichroism spectra indicate that all peptides are disordered in water but helical in micelles. Structures of the peptides were determined in membrane-mimetic micelles by solution NMR spectroscopy. The quality of the distance-based structures was improved by including backbone angle restraints derived from a set of chemical shifts ((1)H(alpha), (15)N, (13)C(alpha), and (13)C(beta)) from natural abundance two-dimensional heteronuclear correlated spectroscopy. Different from the membrane anchor, antibacterial peptides possess a broader and longer hydrophobic surface, allowing a deeper penetration into the membrane, as supported by intermolecular nuclear Overhauser effect cross-peaks between the peptide and short chain dioctanoyl phosphatidylglycerol. An attempt was made to correlate the NMR structures of these peptides with their antibacterial activity. The activity of this group of peptides does not correlate exactly with helicity, amphipathicity, charge, the number of charges, the size of the hydrophobic surface, or hydrophobic transfer free energy. However, a correlation is established between the peptide activity and membrane perturbation potential, which is defined by interfacial hydrophobic patches and basic residues in the case of cationic peptides. Indeed, (31)P solid state NMR spectroscopy of lipid bilayers showed that the extent of lipid vesicle disruption by these peptides is proportional to their membrane perturbation potential.  相似文献   

12.
Lactoferrin is the most dominant protein in milk after casein. This protein plays a crucial role in many biological processes including the regulation of iron metabolism, induction and modulation of the immune system, the primary defense against microorganisms, inhibiting lipid peroxidation and presenting antimicrobial activity against various pathogens such as parasites, fungi, bacteria, and viruses. The major antimicrobial effect of lactoferrin is related to its N-terminal tail where different peptides for instance lactoferricin and lactoferrampin which are important for their antimicrobial abilities are present. The growth rate of bacterial cells in camel milk is lower than that of the cow milk due to having more antimicrobial compounds. In this study, we have fused a codon-optimized partial camel lactoferrcin and lactoferrampin DNA sequences in order to construct a fused peptide via a lysine. This chimeric 42-mer peptide consists of complete and partial amino acid sequence of camel lactoferrampin and lactoferricin, respectively. Human embryonic kidney 293 (HEK-293) cells were used for synthesizing this recombinant peptide. Finally, the antibacterial activities of this constructed peptide were investigated under in vitro condition. The result showed that, all construction, cloning and expression processes were successfully performed in HEK-293. One His-tag tail was added to the chimera in order to optimize the isolation and purification processes and also reduce the cost of production. Additionally, His-tag retained the antimicrobial activity of the chimera. The antimicrobial tests showed that the growth rate in the majority of bacterial plant pathogens, including gram negative and positive bacteria, was inhibited by recombinant chimera as the level of MIC values were evaluated between 0.39 and 25.07 μg/ml for different bacterial isolates.  相似文献   

13.
The phage 434 Cro protein, the N-terminal domain of its repressor (R1-69) and that of phage lambda (lambda6-85) constitute a group of small, monomeric, single-domain folding units consisting of five helices with striking structural similarity. The intrinsic helix stabilities in lambda6-85 have been correlated to its rapid folding behavior, and a residual hydrophobic cluster found in R1-69 in 7 M urea has been proposed as a folding initiation site. To understand the early events in the folding of 434 Cro, and for comparison with R1-69 and lambda6-85, we examined the conformational behavior of five peptides covering the entire 434 Cro sequence in water, 40% (by volume) TFE/water, and 7 M urea solutions using CD and NMR. Each peptide corresponds to a helix and adjacent residues as identified in the native 434 Cro NMR and crystal structures. All are soluble and monomeric in the solution conditions examined except for the peptide corresponding to the 434 Cro helix 4, which has low water solubility. Helix formation is observed for the 434 Cro helix 1 and helix 2 peptides in water, for all the peptides in 40% TFE and for none in 7 M urea. NMR data indicate that the helix limits in the peptides are similar to those in the native protein helices. The number of side-chain NOEs in water and TFE correlates with the helix content, and essentially none are observed in 7 M urea for any peptide, except that for helix 5, where a hydrophobic cluster may be present. The low intrinsic folding propensities of the five helices could account for the observed stability and folding behavior of 434 Cro and is, at least qualitatively, in accord with the results of the recently described diffusion-collision model incorporating intrinsic helix propensities.  相似文献   

14.
Bacteriocin AS-48 is a 70-residue cyclic polypeptide from Enterococcus faecalis that shows a broad antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. The structure of bacteriocin AS-48 consists of a globular arrangement of five helices with a high positive electrostatic potential in the region comprising helix 4, the turn linking helix 4 and 5, and the N-terminus of helix 5. This region has been considered to participate in its biological activity and in particular in membrane permeation. To understand the mechanism of the antibacterial activity of AS-48 and to discriminate the several mechanisms proposed, a simplified bacteriocin was designed consisting of 21 residues and containing the high positively charged region. A disulfide bridge was introduced at an appropriate position to stabilize the peptide and to conserve the helix-turn-helix arrangement in the parent molecule. According to (1)H and (13)C NMR data, the designed simplified bacteriocin fragment adopts a significant population of a native-like helical hairpin conformation in aqueous solution, which is further stabilized in 30% TFE. The designed peptide does not show any antibacterial activity, though it is shown to compete with the intact native bacteriocin AS-48. These results suggest that the mechanism of membrane disruption by bacteriocin is not as simple as being driven by a deposition of positively charged molecules on the plane of the bacterial membrane. Some other regions of the protein must be present such as, for instance, hydrophobic regions so as to enhance the accumulation of the peptide and favour membrane permeation.  相似文献   

15.
Indolicidin is a cationic 13 amino acid peptide amide produced in the granules of bovine neutrophils with the sequence H-ILPWKWPWWPWRR-NH2. Indolicidin is both antimicrobial and, to a lesser extent, haemolytic. In order to systematically investigate structure-function relationships, the solid-phase synthesis of indolicidin and 48 distinct analogues are reported, as well as the characterization of their respective biological properties. Peptides synthesized and characterized include analogues with modified terminal functions, truncations from either terminus, an alanine scan to determine the role of each individual amino acid, specific amino acid exchanges of aromatic, charged and structural residues and several retro-, inverso- and retroinverso-analogues. Together, characterization of these analogues identifies specific residues involved in antimicrobial or haemolytic activity and suggests a core structure that may form a scaffold for the further development of peptidomimetic analogues of indolicidin.  相似文献   

16.
Lactoferricin and lactoferrampin are two antimicrobial peptides found in the N-terminal lobe of bovine lactoferrin with broad spectrum antimicrobial activity against a range of Gram-positive and Gram-negative bacteria as well as Candida albicans. A heterodimer comprised of lactoferrampin joined to a fragment of lactoferricin was recently reported in which these two peptides were joined at their C-termini through the two amino groups of a single Lys residue (Bolscher et al., 2009, Biochimie 91(1):123-132). This hybrid peptide, termed LFchimera, has significantly higher antimicrobial activity compared to the individual peptides or an equimolar mixture of the two. In this work, the underlying mechanism behind the increased antibacterial activity of LFchimera was investigated. Differential scanning calorimetry studies demonstrated that all the peptides influenced the thermotropic phase behaviour of anionic phospholipid suspensions. Calcein leakage and vesicle fusion experiments with anionic liposomes revealed that LFchimera had enhanced membrane perturbing properties compared to the individual peptides. Peptide structures were evaluated using circular dichroism and NMR spectroscopy to gain insight into the structural features of LFchimera that contribute to the increased antimicrobial activity. The NMR solution structure, determined in a miscible co-solvent mixture of chloroform, methanol and water, revealed that the Lys linkage increased the helical content in LFchimera compared to the individual peptides, but it did not fix the relative orientations of lactoferricin and lactoferrampin with respect to each other. The structure of LFchimera provides insight into the conformation of this peptide in a membranous environment and improves our understanding of its antimicrobial mechanism of action.  相似文献   

17.
A template based on positional residue frequencies in the N-terminal stretch of natural alpha-helical antimicrobial peptides was used to prepare sequence patterns and to scan the Swiss-Prot Database, using the ScanProsite tool. This search identified a segment in pilosulin 1, a cytotoxic peptide from the venom of the jumper ant Myrmecia pilosula, as a potential novel antimicrobial peptide sequence. This segment, corresponding to the 20 N-terminal residues, was synthesized and its structural properties and biological activities were investigated. It showed a potent and broad spectrum antimicrobial activity including standard and multi-drug resistant gram-positive and gram-negative bacteria and Candida albicans, confirming the validity of the search method. A rational redesign approach resulting in four amino acid substitutions yielded a variant with improved antibacterial and significantly reduced hemolytic activity.  相似文献   

18.
Bactenecin 5 (Bac 5) is an antibacterial 43mer peptide isolated from bovine neutrophils. It consists of an Arg-rich N-terminal region and successive repeats of Arg-Pro-Pro-Ile (or Phe). We synthesized Bac 5(1-23) and several related peptides to clarify the roles these regions play in antibacterial activity. An assay of antibacterial activity revealed that such activity requires the presence of Arg residues at or near the N-terminus, as well as a chain length exceeding 15 residues. None of the peptides exhibited haemolytic activity. Polyproline II-like CD curves were observed for most of the peptides. Measurements of the membrane perturbation and fusion indicated that the perturbation and fusogenic activities of the peptides were, generally, parallel to their antibacterial activities. Amino acid substitution in the repeating region had some effect on antibacterial activity.  相似文献   

19.
20.
The unique 88 amino acid N-terminal region of cAMP-specific phosphodiesterase-4D5 (PDE4D5) contains overlapping binding sites conferring interaction with the signaling scaffold proteins, betaarrestin and RACK1. A 38-mer peptide, whose sequence reflected residues 12 through 49 of PDE4D5, encompasses the entire N-terminal RACK1 Interaction Domain (RAID1) together with a portion of the beta-arrestin binding site. (1)H NMR and CD analyses indicate that this region has propensity to form a helical structure. The leucine-rich hydrophobic grouping essential for RACK1 interaction forms a discrete hydrophobic ridge located along a single face of an amphipathic alpha-helix with Arg34 and Asn36, which also play important roles in RACK1 binding. The Asn22/Pro23/Trp24/Asn26 grouping, essential for RACK1 interaction, was located at the N-terminal head of the amphipathic helix that contained the hydrophobic ridge. RAID1 is thus provided by a distinct amphipathic helical structure. We suggest that the binding of PDE4D5 to the WD-repeat protein, RACK1, may occur in a manner akin to the helix-helix interaction shown for G(gamma) binding to the WD-repeat protein, G(beta). A more extensive section of the PDE4D5 N-terminal sequence (Thr11-Ala85) is involved in beta-arrestin binding. Several residues within the RAID1 helix contribute to this interaction however. We show here that these residues form a focused band around the centre of the RAID1 helix, generating a hydrophobic patch (from Leu29, Val30 and Leu33) flanked by polar/charged residues (Asn26, Glu27, Asp28, Arg34). The interaction with beta-arrestin exploits a greater circumference on the RAID1 helix, and involves two residues (Glu27, Asp28) that do not contribute to RACK1 binding. In contrast, the interaction of RACK1 with RAID1 is extended over a greater length of the helix and includes Leu37/Leu38, which do not contribute to beta-arrestin binding. A membrane-permeable, stearoylated Val12-Ser49 38-mer peptide disrupted the interaction of both beta-arrestin and RACK1 with endogenous PDE4D5 in HEKB2 cells, whilst a cognate peptide with a Glu27Ala substitution selectively failed to disrupt PDE4D5/RACK1 interaction. The stearoylated Val12-Ser49 38-mer peptide enhanced the isoprenaline-stimulated PKA phosphorylation of the beta(2)-adrenergic receptors (beta(2)AR) and its activation of ERK, whilst the Glu27Ala peptide was ineffective in both these regards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号