首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipose tissue expression and circulating concentrations of monocyte chemoattractant protein-1 (MCP-1) correlate positively with adiposity. To ascertain the roles of MCP-1 overexpression in adipose, we generated transgenic mice by utilizing the adipocyte P2 (aP2) promoter (aP2-MCP-1 mice). These mice had higher plasma MCP-1 concentrations and increased macrophage accumulation in adipose tissues, as confirmed by immunochemical, flow cytometric, and gene expression analyses. Tumor necrosis factor-alpha and interleukin-6 mRNA levels in white adipose tissue and plasma non-esterified fatty acid levels were increased in transgenic mice. aP2-MCP-1 mice showed insulin resistance, suggesting that inflammatory changes in adipose tissues may be involved in the development of insulin resistance. Insulin resistance in aP2-MCP-1 mice was confirmed by hyperinsulinemic euglycemic clamp studies showing that transgenic mice had lower rates of glucose disappearance and higher endogenous glucose production than wild-type mice. Consistent with this, insulin-induced phosphorylations of Akt were significantly decreased in both skeletal muscles and livers of aP2-MCP-1 mice. MCP-1 pretreatment of isolated skeletal muscle blunted insulin-stimulated glucose uptake, which was partially restored by treatment with the MEK inhibitor U0126, suggesting that circulating MCP-1 may contribute to insulin resistance in aP2-MCP-1 mice. We concluded that both paracrine and endocrine effects of MCP-1 may contribute to the development of insulin resistance in aP2-MCP-1 mice.  相似文献   

2.
The renin-angiotensin system (RAS) is classically known for its role in regulation of blood pressure, fluid and electrolyte balance. In this system, angiotensinogen (Agt), the obligate precursor of all bioactive angiotensin peptides, undergoes two enzymatic cleavages by renin and angiotensin converting enzyme (ACE) to produce angiotensin I (Ang I) and angiotensin II (Ang II), respectively. The contemporary view of RAS has become more complex with the discovery of additional angiotensin degradation pathways such as ACE2. All components of the RAS are expressed in and have independent regulation of adipose tissue. This local adipose RAS exerts important auto/paracrine functions in modulating lipogenesis, lipolysis, adipogenesis as well as systemic and adipose tissue inflammation. Mice with adipose-specific Agt overproduction have a 30% increase in plasma Agt levels and develop hypertension and insulin resistance, while mice with adipose-specific Agt knockout have a 25% reduction in Agt plasma levels, demonstrating endocrine actions of adipose RAS. Emerging evidence also points towards a role of RAS in regulation of energy balance. Because adipose RAS is overactivated in many obesity conditions, it is considered a potential candidate linking obesity to hypertension, insulin resistance and other metabolic derangements.  相似文献   

3.
The renin-angiotensin system (RAS) is classically known for its role in regulation of blood pressure, fluid and electrolyte balance. In this system, angiotensinogen (Agt), the obligate precursor of all bioactive angiotensin peptides, undergoes two enzymatic cleavages by renin and angiotensin converting enzyme (ACE) to produce angiotensin I (Ang I) and angiotensin II (Ang II), respectively. The contemporary view of RAS has become more complex with the discovery of additional angiotensin degradation pathways such as ACE2. All components of the RAS are expressed in and have independent regulation of adipose tissue. This local adipose RAS exerts important auto/paracrine functions in modulating lipogenesis, lipolysis, adipogenesis as well as systemic and adipose tissue inflammation. Mice with adipose-specific Agt overproduction have a 30% increase in plasma Agt levels and develop hypertension and insulin resistance, while mice with adipose-specific Agt knockout have a 25% reduction in Agt plasma levels, demonstrating endocrine actions of adipose RAS. Emerging evidence also points towards a role of RAS in regulation of energy balance. Because adipose RAS is overactivated in many obesity conditions, it is considered a potential candidate linking obesity to hypertension, insulin resistance and other metabolic derangements.  相似文献   

4.
Although interleukin (IL)-7 is mostly known as a key regulator of lymphocyte homeostasis, we recently demonstrated that it also contributes to body weight regulation through a hypothalamic control. Previous studies have shown that IL-7 is produced by the human obese white adipose tissue (WAT) yet its potential role on WAT development and function in obesity remains unknown. Here, we first show that transgenic mice overexpressing IL-7 have reduced adipose tissue mass associated with glucose and insulin resistance. Moreover, in the high-fat diet (HFD)-induced obesity model, a single administration of IL-7 to C57BL/6 mice is sufficient to prevent HFD-induced WAT mass increase and glucose intolerance. This metabolic protective effect is accompanied by a significant decreased inflammation in WAT. In lymphocyte-deficient HFD-fed SCID mice, IL-7 injection still protects from WAT mass gain. However, IL-7-triggered resistance against WAT inflammation and glucose intolerance is lost in SCID mice. These results suggest that IL-7 regulates adipose tissue mass through a lymphocyte-independent mechanism while its protective role on glucose homeostasis would be relayed by immune cells that participate to WAT inflammation. Our observations establish a key role for IL-7 in the complex mechanisms by which immune mediators modulate metabolic functions.  相似文献   

5.
6.
Previous studies demonstrated that overexpression of angiotensinogen (AGT) in adipose tissue increased blood pressure. However, the contribution of endogenous AGT in adipocytes to the systemic renin-angiotensin system (RAS) and blood pressure control is undefined. To define a role of adipocyte-derived AGT, mice with loxP sites flanking exon 2 of the AGT gene (Agt(fl/fl)) were bred to transgenic mice expressing Cre recombinase under the control of an adipocyte fatty acid-binding protein 4 promoter (aP2) promoter to generate mice with adipocyte AGT deficiency (Agt(aP2)). AGT mRNA abundance in adipose tissue and AGT secretion from adipocytes were reduced markedly in adipose tissues of Agt(aP2) mice. To determine the contribution of adipocyte-derived AGT to the systemic RAS and blood pressure control, mice were fed normal laboratory diet for 2 or 12 mo. In males and females of each genotype, body weight and fat mass increased with age. However, there was no effect of adipocyte AGT deficiency on body weight, fat mass, or adipocyte size. At 2 and 12 mo of age, mice with deficiency of AGT in adipocytes had reduced plasma concentrations of AGT (by 24-28%) compared with controls. Moreover, mice lacking AGT in adipocytes exhibited reduced systolic blood pressures compared with controls (Agt(fl/fl), 117 ± 2; Agt(aP2), 110 ± 2 mmHg; P < 0.05). These results demonstrate that adipocyte-derived AGT contributes to the systemic RAS and blood pressure control.  相似文献   

7.
Obesity-associated inflammation in white adipose tissue (WAT) is a causal factor of systemic insulin resistance. To better understand how adipocytes regulate WAT inflammation, the present study generated chimeric mice in which inducible 6-phosphofructo-2-kinase was low, normal, or high in WAT while the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3) was normal in hematopoietic cells, and analyzed changes in high-fat diet (HFD)-induced WAT inflammation and systemic insulin resistance in the mice. Indicated by proinflammatory signaling and cytokine expression, the severity of HFD-induced WAT inflammation in WT → Pfkfb3+/– mice, whose Pfkfb3 was disrupted in WAT adipocytes but not hematopoietic cells, was comparable with that in WT → WT mice, whose Pfkfb3 was normal in all cells. In contrast, the severity of HFD-induced WAT inflammation in WT → Adi-Tg mice, whose Pfkfb3 was over-expressed in WAT adipocytes but not hematopoietic cells, remained much lower than that in WT → WT mice. Additionally, HFD-induced insulin resistance was correlated with the status of WAT inflammation and comparable between WT → Pfkfb3+/– mice and WT → WT mice, but was significantly lower in WT → Adi-Tg mice than in WT → WT mice. In vitro, palmitoleate decreased macrophage phosphorylation states of Jnk p46 and Nfkb p65 and potentiated the effect of interleukin 4 on suppressing macrophage proinflammatory activation. Taken together, these results suggest that the Pfkfb3 in adipocytes functions to suppress WAT inflammation. Moreover, the role played by adipocyte Pfkfb3 is attributable to, at least in part, palmitoleate promotion of macrophage anti-inflammatory activation.  相似文献   

8.
Insulin controls fatty acid (FA) release from white adipose tissue (WAT) through direct effects on adipocytes and indirectly through hypothalamic signaling by reducing sympathetic nervous system outflow to WAT. Uncontrolled FA release from WAT promotes lipotoxicity, which is characterized by inflammation and insulin resistance that leads to and worsens type 2 diabetes. Here we tested whether early diet-induced insulin resistance impairs the ability of hypothalamic insulin to regulate WAT lipolysis and thus contributes to adipose tissue dysfunction. To this end we fed male Sprague-Dawley rats a 10% lard diet (high fat diet (HFD)) for 3 consecutive days, which is known to induce systemic insulin resistance. Rats were studied by euglycemic pancreatic clamps and concomitant infusion of either insulin or vehicle into the mediobasal hypothalamus. Short term HFD feeding led to a 37% increase in caloric intake and elevated base-line free FAs and insulin levels compared with rats fed regular chow. Overfeeding did not impair insulin signaling in WAT, but it abolished the ability of mediobasal hypothalamus insulin to suppress WAT lipolysis and hepatic glucose production as assessed by glycerol and glucose flux. HFD feeding also increased hypothalamic levels of the endocannabinoid 2-arachidonoylglycerol after only 3 days. In summary, overfeeding impairs hypothalamic insulin action, which may contribute to unrestrained lipolysis seen in human obesity and type 2 diabetes.  相似文献   

9.
目的:探讨心理应激对小鼠脂肪组织黄嘌呤氧化酶表达、活性及相关指标的作用。方法:雄性无特定病原体(SPF)级20只昆明小鼠随机分2组(每组10只),即慢性束缚应激(Stress)组和正常对照(Control)组。Stress组小鼠每天在自制式束缚器中限制活动2 h,其余时间两组小鼠在相同环境中自由饮水摄食,实验持续14 d,取血和白色脂肪组织(WAT);观察脂肪组织病理学改变,检测WAT中黄嘌呤氧化酶(XO)和烟酰胺腺嘌呤二核苷酸磷酸氧化酶4(Nox-4)的蛋白水平,检测WAT组织中XO、Nox-4、超氧化物歧化酶(Mn SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)、脂联素(ADPN)、单核细胞趋化蛋白1(MCP-1)、白介素6(IL-6)、肿瘤坏死因子α(TNF-α)、胰岛素受体底物1(IRS-1)、葡萄糖转运蛋白4(GLUT-4)、组织因子(TF)、纤溶酶原激活物抑制物1(PAI-1)的mRNA表达,检测血清和WAT组织中XO酶活性以及血清甘油三酯(TG)、总胆固醇(T-Cho)、游离脂肪酸(FFA)、尿酸(UA)的含量。结果:与control组比较,stress小鼠腹股沟WAT组织中XO免疫染色阳性着色细胞黄褐色沉淀深且丰富,WAT中出现大量的单核细胞、中性粒细胞、嗜酸性粒细胞及浆细胞浸润反应和炎症性的改变;血清XO浓度、WAT组织中XO mRNA水平和XO的酶活性显著升高(P<0.01),血清游离脂肪酸(FFA)和尿酸(UA)的含量显著增高(P<0.01),WAT组织中Nox-4蛋白、MCP-1、IL-6、TNF-α、TF、PAI-1mRNA的表达水平显著增高(P<0.01),而Mn-SOD、GSH-Px、CAT、ADPN、IRS-1和GLUT-4的mRNA水平则显著降低(P<0.01)。结论:心理应激可诱发脂肪XO过量表达及其活性增高,进而引起脂肪炎症、糖代谢及凝血酶原异常等反应。  相似文献   

10.
Dysfunction of adipocytes and adipose tissue is a primary defect in obesity and obesity-associated metabolic diseases. Interferon regulatory factor 3 (IRF3) has been implicated in adipogenesis. However, the role of IRF3 in obesity and obesity-associated disorders remains unclear. Here, we show that IRF3 expression in human adipose tissues is positively associated with insulin sensitivity and negatively associated with type 2 diabetes. In mouse pre-adipocytes, deficiency of IRF3 results in increased expression of PPARγ and PPARγ-mediated adipogenic genes, leading to increased adipogenesis and altered adipocyte functionality. The IRF3 knockout (KO) mice develop obesity, insulin resistance, glucose intolerance, and eventually type 2 diabetes with aging, which is associated with the development of white adipose tissue (WAT) inflammation. Increased macrophage accumulation with M1 phenotype which is due to the loss of IFNβ-mediated IL-10 expression is observed in WAT of the KO mice compared to that in wild-type mice. Bone-marrow reconstitution experiments demonstrate that the nonhematopoietic cells are the primary contributors to the development of obesity and both hematopoietic and nonhematopoietic cells contribute to the development of obesity-related complications in IRF3 KO mice. This study demonstrates that IRF3 regulates the biology of multiple cell types including adipocytes and macrophages to prevent the development of obesity and obesity-related complications and hence, could be a potential target for therapeutic interventions for the prevention and treatment of obesity-associated metabolic disorders.Subject terms: Interferons, Preclinical research  相似文献   

11.
Macroautophagy (MA) regulates cellular quality control and energy balance. For example, loss of MA in aP2‐positive adipocytes converts white adipose tissue (WAT) into brown adipose tissue (BAT)‐like, enhancing BAT function and thereby insulin sensitivity. However, whether MA regulates early BAT development is unknown. We report that deleting Atg7 in myogenic Myf5+ progenitors inhibits MA in Myf5‐cell‐derived BAT and muscle. Knock out (KO) mice have defective BAT differentiation and function. Surprisingly, their body temperature is higher due to WAT lipolysis‐driven increases in fatty acid oxidation in ‘Beige’ cells in inguinal WAT, BAT and muscle. KO mice also present impaired muscle differentiation, reduced muscle mass and glucose intolerance. Our studies show that ATG7 in Myf5+ progenitors is required to maintain energy and glucose homeostasis through effects on BAT and muscle development. Decreased MA in myogenic progenitors with age and/or overnutrition might contribute to the metabolic defects and sarcopenia observed in these conditions.  相似文献   

12.
Ectonucleotide pyrophosphate phosphodiesterase (ENPP1) has been shown to negatively modulate insulin receptor and to induce cellular insulin resistance when overexpressed in various cell types. Systemic insulin resistance has also been observed when ENPP1 is overexpressed in multiple tissues of transgenic models and attributed largely to tissue insulin resistance induced in skeletal muscle and liver. Another key tissue in regulating glucose and lipid metabolism is adipose tissue (AT). Interestingly, obese patients with insulin resistance have been reported to have increased AT ENPP1 expression. However, the specific effects of ENPP1 in AT have not been studied. To better understand the specific role of AT ENPP1 on systemic metabolism, we have created a transgenic mouse model (C57/Bl6 background) with targeted overexpression of human ENPP1 in adipocytes, using aP2 promoter in the transgene construct (AdiposeENPP1-TG). Using either regular chow or pair-feeding protocol with 60% fat diet, we compared body fat content and distribution and insulin signaling in adipose, muscle, and liver tissues of AdiposeENPP1-TG and wild-type (WT) siblings. We also compared response to intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT). Our results show no changes in Adipose ENPP1-TG mice fed a regular chow diet. After high-fat diet with pair-feeding protocol, AdiposeENPP1-TG and WT mice had similar weights. However, AdiposeENPP1-TG mice developed fatty liver in association with changes in AT characterized by smaller adipocyte size and decreased phosphorylation of insulin receptor Tyr(1361) and Akt Ser(473). These changes in AT function and fat distribution were associated with systemic abnormalities of lipid and glucose metabolism, including increased plasma concentrations of fatty acid, triglyceride, plasma glucose, and insulin during IPGTT and decreased glucose suppression during ITT. Thus, our results show that, in the presence of a high-fat diet, ENPP1 overexpression in adipocytes induces fatty liver, hyperlipidemia, and dysglycemia, thus recapitulating key manifestations of the metabolic syndrome.  相似文献   

13.
Abscisic acid (ABA) is a natural phytohormone and peroxisome proliferator-activated receptor gamma (PPARgamma) agonist that significantly improves insulin sensitivity in db/db mice. Although it has become clear that obesity is associated with macrophage infiltration into white adipose tissue (WAT), the phenotype of adipose tissue macrophages (ATMs) and the mechanisms by which insulin-sensitizing compounds modulate their infiltration remain unknown. We used a loss-of-function approach to investigate whether ABA ameliorates insulin resistance through a mechanism dependent on immune cell PPARgamma. We characterized two phenotypically distinct ATM subsets in db/db mice based on their surface expression of F4/80. F4/80(hi) ATMs were more abundant and expressed greater concentrations of chemokine receptor (CCR) 2 and CCR5 when compared to F4/80(lo) ATMs. ABA significantly decreased CCR2(+) F4/80(hi) infiltration into WAT and suppressed monocyte chemoattractant protein-1 (MCP-1) expression in WAT and plasma. Furthermore, the deficiency of PPARgamma in immune cells, including macrophages, impaired the ability of ABA to suppress the infiltration of F4/80(hi) ATMs into WAT, to repress WAT MCP-1 expression and to improve glucose tolerance. We provide molecular evidence in vivo demonstrating that ABA improves insulin sensitivity and obesity-related inflammation by inhibiting MCP-1 expression and F4/80(hi) ATM infiltration through a PPARgamma-dependent mechanism.  相似文献   

14.
ObjectiveWhite adipose tissue (WAT) is now considered a defined tissue capable of interactions with other organ systems. WAT role in elevating the level of systemic chronic inflammation suggests that alterations in this tissue as the result of disease or environmental factors may influence the development and progression of various obesity-related pathologies. This study investigated WAT cell-specific responses to an organometal compound, trimethyltin (TMT), to determine possible contribution to induced inflammation.MethodsHuman primary mature adipocytes and macrophage differentiated THP-1 cells were cultured in TMT presence and relative toxicities and different adipokine levels were determined. The inflammatory response was examined in TMT presence for primary cells from obese ob/ob mice WAT, and after TMT injection in ob/ob mice.ResultsBoth adipocytes and macrophages were resistant to cell death induced by TMT. However, adipocytes cultured in TMT presence showed increased expression of TNFα and IL-6, and modified leptin levels. In macrophage cultures, TMT also increased TNFα and IL-6, while MCP-1 and MIP-1α were decreased. In vivo, a single injection of TMT in ob/ob mice, elevated TNFα, MIP-1α and adiponectin in WAT.ConclusionsElevation of the inflammatory related products can be induced by chemical exposure in adipocytes and macrophages, as well as murine WAT. These data suggest that numerous factors, including a systemic chemical exposure, can induce an inflammatory response from the WAT. Furthermore, when characterizing both chemical-induced toxicity and the progression of the chronic inflammation associated with elevated WAT content, such responses in this target tissue should be taken into consideration.  相似文献   

15.
A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1), tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT) was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs) and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1) and glucose transporter 4 (GLUT4) in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results indicate that irbesartan improves stress-induced adipose tissue inflammation and insulin resistance. Our results suggests that irbesartan treatment exerts additive benefits for glucose metabolism in hypertensive patients with mental stress.  相似文献   

16.
17.
Obesity is associated with a low-grade inflammation which is correlated with an increased secretion of pro-inflammatory cytokines and chemokines by adipose tissue, suspected to contribute to the development of insulin resistance. Because lycopene is mostly stored in adipose tissue and possesses anti-inflammatory properties, we hypothesize that lycopene could reduce the production of proinflammatory markers in adipose tissue. In agreement with this hypothesis, we observed a decrease of inflammatory markers such as IL-6, MCP-1 and IL-1β at both the mRNA and protein level when explants of epididymal adipose tissue from mice fed with a high-fat diet were incubated with lycopene ex vivo. The same effect was reproduced with explants of adipose tissue preincubated in lycopene and then subjected to TNFα stimulation. The contribution of adipocytes and preadipocytes was evaluated. In both preadipocytes and differentiated 3T3-L1 adipocytes, lycopene preincubation for 24 h decreased the TNFα-mediated induction of IL-6 and MCP-1. Finally, the same results were reproduced with human adipocyte primary cultures. The molecular mechanism was also studied. In transient transfections, a decrease of the luciferase gene reporter under control of NF-κB responsive element was observed for cells incubated in the presence of lycopene and TNFα compared to TNFα alone. The involvement of the NF-κB pathway was confirmed by the modulation of IKKα/β phosphorylation by lycopene.Altogether, these results showed for the first time a limiting effect of lycopene on adipose tissue proinflammatory cytokine and chemokine production. Such an effect could prevent or limit the prevalence of obesity-associated pathologies, such as insulin resistance.  相似文献   

18.
Loss of ovarian function, as occurs in menopause or after ovariectomy (OVX), is associated with insulin resistance. Adipose tissue inflammation is suggested to be a key component of obesity-induced insulin resistance in male rodents. However, little is known about the effect of OVX and diet on insulin resistance in association with immune homeostasis. Thus, we conducted this study to determine how high-fat diet (HFD) and OVX, alone or in combination, impacted adipose tissue inflammation and insulin resistance. Nine-week-old sham and OVX-treated C57Bl/6 mice were fed low-fat diet (LFD) or HFD (60%) up to 16 weeks. Glucose metabolism was assessed, and adipose tissue and spleen were characterized for tissue inflammation and immune cell populations. First, we found that HFD induced glucose intolerance in both OVX mice and, to a lesser extent, sham mice. OVX mice fed LFD showed no difference in glucose intolerance compared to sham mice. Additionally, OVX mice only when exposed to HFD displayed a proinflammatory profile in adipose tissue: increased macrophages together with dominant M1-like phenotype and also increased T cells, B cells and NK cells compared to those with intact ovarian function. Together, our findings indicate that loss of ovarian function coupled with an HFD intake promotes insulin resistance and adipose tissue inflammation by disturbing adipose tissue immune homeostasis. These findings have a clinical implication in the dietary guidance for menopausal women.  相似文献   

19.
Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.  相似文献   

20.
The novel obesity-associated protein Phosphotyrosine Interaction Domain containing 1 (PID1) inhibits insulin-PI3K/Akt signaling pathway and insulin-stimulated glucose uptake in vitro. In this study, we generated fat tissue-specific aP2-PID1 transgenic (aP2-PID1tg) mice and PID1 knockout (PID1?/?) mice to explore how PID1 affects glucose metabolism in vivo. We observed insulin resistance and impaired insulin-PI3K/Akt signaling in aP2-PID1tg mice. Consistent with these data, the PID1?/? mice displayed improved glucose tolerance and insulin sensitivity under chow diet, with increased Akt phosphorylation in white adipose tissue (WAT). We further demonstrated that PID1 could interact with low density lipoprotein receptor-related protein 1 (LRP1) but not the insulin receptor (IR) in adipocytes, and its overexpression could lead to decreased GLUT4 level. Our results thus indentify PID1 as a critical regulator of glucose metabolism in adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号