首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel Gram-strain positive, aerobic, actinobacterial strain, designated CF11/1T, was isolated from a sand sample obtained in the Sahara Desert, Chad. The black-pigmented isolate was aerobic and exhibited optimal growth from 25 to 35 °C at pH 6.0–8.0 and with 0–8 % (w/v) NaCl, indicating that it is a halotolerant mesophile. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The G+C content in the genome was 74.4 mol%. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and a minor fraction of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone, and galactose was detected as a diagnostic sugar. The major cellular fatty acid was branched-chain saturated acid iso-C16:0. Analysis of 16S rRNA gene sequences showed 95.3–98.6 % pairwise sequence identity with the members of the genus Geodermatophilus. Based on phenotypic and chemotaxonomic properties, as well as phylogenetic distinctiveness, the isolate represents a novel species, Geodermatophilus africanus, with the type strain CF11/1T (DSM 45422 = CCUG 62969 = MTCC 11556).  相似文献   

2.
A novel Gram-positive, aerobic, actinobacterial strain, CF6/1T, was isolated in 2007 during environmental screening of arid desert soil in the Sahara near to Ourba, Chad. The isolate was found to grow best in a temperature range of 20–37 °C and at pH 6.0–8.5 and showed no NaCl tolerance, forming black-coloured and nearly circular colonies on GYM agar. Chemotaxonomic and molecular characteristics determined for the isolate match those previously described for members of the genus Geodermatophilus. The DNA G + C content of the novel strain was determined to be 74.9 mol %. The peptidoglycan was found to contain meso-diaminopimelic acid as the diagnostic diamino acid. The main phospholipids were determined to be phosphatidylethanolamine, phosphatidylinositol, phosphatidylcholine, diphosphatidylglycerol and traces of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose as the diagnostic sugar. The major cellular fatty acids were found to be the branched-chain saturated acids iso-C16:0 and iso-C15:0, as well as C17:1ω8c. The 16S rRNA gene sequence shows 97.5–97.9 % sequence identity with the four validly named or at least effectively published members of the genus: Geodermatophilus obscurus (97.5 %), Geodermatophilus arenarius (97.7 %), Geodermatophilus ruber (97.9 %) and Geodermatophilus nigrescens (97.9 %). Based on the results from this polyphasic taxonomic analysis and DNA–DNA hybridizations with all type strains of the genus, we propose that strain CF6/1T represents a novel species, Geodermatophilus siccatus, with the type strain CF6/1T = DSM 45419T = CCUG 62765T = MTCC 11414T.  相似文献   

3.
The taxonomic position of an aerobic actinobacterial strain, BMG841T, isolated from the Bulla Regia monument (Tunisia) and exhibiting a high resistance to gamma-radiation (D10 ~9 kGy) was determined using polyphasic approach. The optimal growth range was found to be 25–35 °C at pH of 7.0–8.5. The strain was observed to form black dry colonies. Chemotaxonomic characteristics of the isolate showed a cell wall type III, with galactose and glucose as diagnostic sugars; phosphatidylcholine, phosphatidylinositol, diphosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid as main polar lipids; and MK-9(H4) as the predominant menaquinone. The major cellular fatty acids were identified as iso-C16:0 and iso-C15:0. Phylogenetic analysis indicated that strain BMG841T represents a novel member of the genus Geodermatophilus with high 16S rRNA gene sequence identity with Geodermatophilus saharensis (98.28 %). Based on phylogenetic and phenotypic analysis, strain BMG841T is proposed as the type strain (=DSM 46841T = CECT 8821T) of a novel species, Geodermatophilus bullaregiensis.  相似文献   

4.
A novel Gram-positive, aerobic, actinobacterial strain, CF5/5, was isolated from soil in the Sahara desert, Chad. It grew best at 20–35 °C and at pH 6.0–8.0 and with 0–4 % (w/v) NaCl, forming black-colored colonies. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G + C content was 75.9 mol%. The peptidoglycan contained meso-diaminopimelic acid; galactose and xylose were detected as diagnostic sugars. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, and phosphatidylinositol; MK-9(H4) was the dominant menaquinone. The major cellular fatty acids were: iso-C16:0 and iso-C15:0. The 16S rRNA gene showed 95.6–98.3 % sequence similarity with the other named members of the genus Geodermatophilus. Based on the polyphasic taxonomy data, the isolate is proposed to represent a novel species, Geodermatophilus saharensis with the type strain CF5/5T = DSM 45423 = CCUG 62813 = MTCC 11416.  相似文献   

5.
A polyphasic study was undertaken to establish the taxonomic status of three representative Geodermatophilus strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates B12T, B20 and B25, were found to have chemotaxonomic and morphological properties characteristic of the genus Geodermatophilus. The isolates shared a broad range of chemotaxonomic, cultural and physiological features, formed a well-supported branch in the Geodermatophilus 16S rRNA gene tree in which they were most closely associated with the type strain of Geodermatophilus obscurus. They were distinguished from the latter by BOX-PCR fingerprint patterns and by chemotaxonomic and other phenotypic properties. Average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the whole genome sequences of isolate B12T and G. obscurus DSM 43160T were 89.28%, 87.27% and 37.4%, respectively, metrics consistent with its classification as a separate species. On the basis of these data, it is proposed that the isolates be assigned to the genus Geodermatophilus as Geodermatophilus chilensis sp. nov. with isolate B12T (CECT 9483T = NCIMB 15089T) as the type strain. Analysis of the whole genome sequence of G. chilensis B12T with 5341 open reading frames and a genome size of 5.5 Mb highlighted genes and gene clusters that encode for properties relevant to its adaptation to extreme environmental conditions prevalent in extreme hyper-arid Atacama Desert soils.  相似文献   

6.
A novel Gram-positive, aerobic, actinobacterial strain, CF5/4T, was isolated in 2007 during an environmental screening of arid desert soil in Ouré Cassoni, Chad. The isolate grew best in a temperature range of 28–40?°C and at pH 6.0–8.5, with 0–1?% (w/v) NaCl, forming brown-coloured and nearly circular colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G?+?C content of the novel strain was 75.9?mol?%. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, diphosphatidylglycerol and a small amount of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C15:0 and iso-C16:0. The 16S rRNA gene showed 96.2–98.3?% sequence identity with the three members of the genus Geodermatophilus: G. obscurus (96.2?%), G. ruber (96.5?%), and G. nigrescens (98.3?%). Based on the chemotaxonomic results, 16S rRNA gene sequence analysis and DNA–DNA hybridization with the type strain of G. nigrescens, the isolate is proposed to represent a novel species, Geodermatophilus arenarius (type strain CF5/4T?=?DSM 45418T?=?MTCC 11413T?=?CCUG 62763T).  相似文献   

7.
A novel Gram-positive, rod-shaped, motile, spore-forming, nitrogen-fixing bacterium, designated strain 7188T, was isolated from jujube rhizosphere soil in Beijing, China. The strain grew at 4–40 °C and pH 6–12, with an optimum of 30 °C and pH 7.0, respectively. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain 7188T is a member of the genus Paenibacillus. Levels of 16S rRNA gene sequence similarities between strain 7188T and the type strains of all recognized members of the genus Paenibacillus were below 96 %. The major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and C16:0. The predominant menaquinone was MK-7. The DNA G+C content of strain 7188T was 60.3 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminophospholipids. The diamino acid in the cell wall peptidoglycan is meso-diaminopimelic acid. On the basis of these results, strain 7188T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus beijingensis sp. nov. is proposed. The type strain is 7188T (=ACCC 03082T = DSM 24997T).  相似文献   

8.
A nitrogen-fixing bacterium, designated strain gs65T, was isolated from a rhizosphere soil sample of Caragana kansuensis Pojark. Phylogenetic analysis based on a fragment of the nifH gene and the full-length 16S rRNA gene sequence revealed that strain gs65T is a member of the genus Paenibacillus. High levels of 16S rRNA gene similarity were found between strain gs65T and Paenibacillus borealis DSM 13188T (97.5 %), Paenibacillus odorifer ATCC BAA-93T (97.3 %), Paenibacillus durus DSM 1735T (97.0 %) and Paenibacillus sophorae DSM23020T (96.9 %). Levels of 16S rRNA gene sequence similarity between strain gs65T and the type strains of other recognized members of the genus Paenibacillus were below 97.0 %. Levels of DNA–DNA relatedness between strain gs65T and P. borealis DSM 13188T, P. odorifer ATCC BAA-93T (97.3 %), P. durus DSM 1735T and P. sophorae DSM23020T were 35.9, 38.0, 34.2 and 35.5 % respectively. The DNA G+C content of strain gs65T was determined to be 51.6 mol%. The major fatty acids were found to be iso-C14:0, anteiso-C15:0 and iso-C16:0. On the basis of its phenotypic characteristics and levels of DNA–DNA hybridization, strain gs65T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus taohuashanense sp. nov. is proposed. The type strain is gs65T (=CGMCC 1.12175T = DSM 25809T).  相似文献   

9.
A novel actinomycete, designated as strain YIM 75980T, was isolated from a soil sample collected from a dry-hot river valley in Dongchuan county, Yunnan province, south-west China and was subjected to polyphasic taxonomic characterization. The organism produced circular, smooth, red to black coloured colonies comprising coccoid-shaped cells. Colonies on agar medium lacked mycelia and cells adhered to the agar. Strain YIM 75980T contained meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan and contained galactose, arabinose and glucosamine as the main sugars in the whole-cell hydrolysates. The predominant menaquinone was MK-9 (H4) and the major fatty acids were iso-C15:0, iso-C16:0 and C16:0. The DNA G + C content of strain YIM 75980T was 73.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences clearly showed that strain YIM 75980T formed a distinct clade within the genus Geodermatophilus and was closely related to Geodermatophilus obscurus DSM 43160T (level of similarity, 97.9%). Furthermore, the result of DNA–DNA hybridization between strain YIM 75980T and G. obscurus 43160T demonstrated that this isolate represented a different genomic species in the genus Geodermatophilus. Moreover, the physiological and biochemical data showed the differentiation of strain YIM 75980T from its closest phylogenetic neighbour. Therefore, it is proposed that strain YIM 75980T represents a novel species of the genus Geodermatophilus, for which the name Geodermatophilus nigrescens sp. nov. is proposed. The type strain is YIM 75980T (=CCTCC AA 2011015T =JCM 18056T).  相似文献   

10.
A novel Gram-positive, rod-shaped, motile, spore-forming, nitrogen-fixing bacterium, designated strain 112T, was isolated from cabbage rhizosphere in Beijing, China. The strain was found to grow at 10–40 °C and pH 4–11, with an optimum of 30 °C and pH 7.0, respectively. Phylogenetic analysis based on a fragment of the full-length 16S rRNA gene sequence revealed that strain 112T is a member of the genus Paenibacillus. High levels of 16S rRNA gene similarities were found between strain 112T, Paenibacillus sabinae DSM 17841T (97.82 %) and Paenibacillus forsythiae DSM 17842T (97.22 %). However, the DNA–DNA hybridization values between strain 112T and the type strains of these two species were 10.36 and 6.28 %, respectively. The predominant menaquinone was found to be menaquinone 7 (MK-7). The major fatty acids were determined to be anteiso-C15:0 and C16:0. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminophospholipids. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. The DNA G+C content was determined to be 55.4 mol%. On the basis of its phenotypic characteristics, 16S rRNA gene sequence analysis and the value of DNA–DNA hybridization, strain 112T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus brassicae sp. nov. is proposed. The type strain is 112T (= ACCC 01125T = DSM 24983T).  相似文献   

11.
Three novel Gram-positive, aerobic, actinobacterial strains, CF5/2T, CF5/1 and CF7/1, were isolated in 2007 during environmental screening of arid desert soil in the Sahara desert, Chad. Results from riboprinting, MALDI-TOF protein spectra and 16S rRNA sequence analysis confirmed that all three strains belonged to the same species. Phylogenetic analysis of 16S rRNA sequences with the strains’ closest relatives indicated that they represented a distinct species. The three novel strains also shared a number of physiological and biochemical characteristics distinct from previously named Geodermatophilus species. The novel strains’ peptidoglycan contained meso-diaminopimelic acid; their main phospholipids were phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and a small amount of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone. The major cellular fatty acids were the branched-chain saturated acids iso-C16:0 and iso-C15:0. Galactose was detected as diagnostic sugar. Based on these chemotaxonomic results, 16S rRNA gene sequence analysis and DNA–DNA hybridization between strain CF5/2T and the type strains of Geodermatophilus saharensis, Geodermatophilus arenarius, Geodermatophilus nigrescens, Geodermatophilus telluris and Geodermatophilus siccatus, the isolates CF5/2T, CF5/1 and CF7/1 are proposed to represent a novel species, Geodermatophilus tzadiensis, with type strain CF5/2T = DSM 45416 = MTCC 11411 and two reference strains, CF5/1 (DSM 45415) and CF7/1 (DSM 45420).  相似文献   

12.
A pink-pigmented, Gram negative, aerobic, facultatively methylotrophic bacterium, strain BL44T, was isolated from bamboo leaves and identified as a member of the genus Methylobacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed similarity values of 98.7–97.0 % with closely related type strains and showed highest similarity to Methylobacterium zatmanii DSM 5688T (98.7 %) and Methylobacterium thiocyanatum DSM 11490T (98.7 %). Methylotrophic metabolism in this strain was confirmed by PCR amplification and sequencing of the mxaF gene coding for the α-subunit of methanol dehydrogenase. Strain BL44T produced three known quorum sensing signal molecules with similar retention time to C8, C10 and C12-HSLs when characterized by GC–MS. The fatty acid profiles contained major amounts of C18:1 ω7c, iso-3OH C17:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH), which supported the grouping of the isolate in the genus Methylobacterium. The DNA G+C content was 66.9 mol%. DNA relatedness of the strain BL44T to its most closely related strains ranged from 12–43.3 %. On the basis of the phenotypic, phylogenetic and DNA–DNA hybridization data, strain BL44T is assigned to a novel species of the genus Methylobacterium for which the name Methylobacterium pseudosasae sp. nov. is proposed (type strain BL44T = NBRC 105205T = ICMP 17622T).  相似文献   

13.
Two deltaproteobacterial sulfate reducers, designated strain I.8.1T and I.9.1T, were isolated from the oxygen minimum zone water column off the coast of Peru at 400 and 500 m water depth. The strains were Gram-negative, vibrio-shaped and motile. Both strains were psychrotolerant, grew optimally at 20°C at pH 7.0–8.0 and at 2.5–3.5% NaCl (w/v). The strains grew by utilizing hydrogen/acetate, C3–4 fatty acids, amino acids and glycerol as electron acceptors for sulfate reduction. Fumarate, lactate and pyruvate supported fermentative growth. Sulfate, sulfite, thiosulfate and taurin supported growth as electron acceptors. Both strains were catalase-positive and highly oxygen-tolerant, surviving 24 days of exposure to atmospheric concentrations. MK6 was the only respiratory quinone. The most prominent cellular fatty acid was iso-17:1-ω9c (18%) for strain I.8.1T and iso-17:0-ω9c (14%) for strain I.9.1T. The G+C contents of their genomic DNA were 45–46 mol%. Phylogenetic analysis of 16S rRNA and dsrAB gene sequences showed that both strains belong to the genus Desulfovibrio. Desulfovibrio acrylicus DSM 10141T and Desulfovibrio marinisediminis JCM 14577T represented their closest validly described relatives with pairwise 16S rRNA gene sequence identities of 98–99%. The level of DNA-DNA hybridization between strains I.8.1T and I.9.1T was 30–38%. The two strains shared 10–26% DNA-DNA relatedness with D. acrylicus. Based on a polyphasic investigation it is proposed that strains I.8.1T and I.9.1T represent a novel species for which the name Desulfovibrio oceani sp. nov. is proposed with the two subspecies D. oceani subsp. oceani (type strain, I.8.1T = DSM 21390T = JCM 15970T) and D. oceani subsp. galateae (type strain, I.9.1T = DSM 21391T = JCM 15971T).  相似文献   

14.
A Streptomyces-like actinomycete strain, designated as YIM 78087T, was isolated from a sediment sample collected from Hehua hot spring in Tengchong, Yunnan province, south-west China. The taxonomic position of strain YIM 78087T was investigated by a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain YIM 78087T belongs to the genus Streptomyces and is closely related to Streptomyces fimbriatus DSM 40942T, Streptomyces marinus DSM 41968T and Streptomyces qinglanensis DSM 42035T (97.18, 97.05 and 97.1 % similarity, respectively). Combined with the low values of DNA–DNA hybridization between strain YIM 78087T and its closest neighbours, these analyses indicated that this new isolate represents a different genomic species in the genus Streptomyces. The predominant menaquinones of strain YIM 78087T were identified as MK-9 (H4) and MK-9 (H6). The major fatty acids were identified as anteiso-C15:0 (28.4 %), anteiso-C17:0 (23.0 %) and iso-C16:0 (15.1 %). The whole-cell hydrolysates found to contain glucose, mannose and ribose. The DNA G+C content was determined to be 73.0 mol%. Based on the comparative analysis of phenotypic and genotypic characteristics, it is proposed that strain YIM 78087T represents a novel species of the genus Streptomyces, for which the name Streptomyces calidiresistens sp. nov., is proposed. The type strain is YIM 78087T (=BCRC 16955T=DSM 42108T=JCM 19629T).  相似文献   

15.
A novel halophilic actinomycete, strain H32T, was isolated from a Saharan soil sample collected in El-Oued province, south Algeria. The isolate was characterized by means of polyphasic taxonomy. Optimal growth was determined to occur at 28–32 °C, pH 6.0–7.0 and in the presence of 15–25 % (w/v) NaCl. The strain was observed to produce abundant aerial mycelium, which formed long chains of rod-shaped spores at maturity, and fragmented substrate mycelium. The cell wall was determined to contain meso-diaminopimelic acid and the characteristic whole-cell sugars were arabinose and galactose. The predominant menaquinones were found to be MK-10(H4) and MK-9(H4). The predominant cellular fatty acids were determined to be anteiso C17:0, iso-C15:0 and iso-C16:0. The diagnostic phospholipid detected was phosphatidylcholine. Phylogenetic analyses based on the 16S rRNA gene sequence showed that this strain formed a distinct phyletic line within the radiation of the genus Actinopolyspora. The 16S rRNA gene sequence similarity indicated that strain H32T was most closely related to ‘Actinopolyspora algeriensis’ DSM 45476T (98.8 %) and Actinopolyspora halophila DSM 43834T (98.5 %). Furthermore, the result of DNA–DNA hybridization between strain H32T and the type strains ‘A. algeriensis’ DSM 45476T, A. halophila DSM 43834T and Actinopolyspora mortivallis DSM 44261T demonstrated that this isolate represents a different genomic species in the genus Actinopolyspora. Moreover, the physiological and biochemical data allowed the differentiation of strain H32T from its closest phylogenetic neighbours. Therefore, it is proposed that strain H32T represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora saharensis sp. nov. is proposed. The type strain is H32T (=DSM 45459T=CCUG 62966T).  相似文献   

16.
A Gram-negative, oxidase-positive, facultatively anaerobic bacterium, designated strain E20121, was isolated from the digestive tract of a Japanese prawn (Marsupenaeus japonicus) collected from the coastal sea water area of Zhuhai, Guangdong province, China. The new isolate was determined to be closely related to Vibrio ponticus DSM 16217T, having 97.6 % 16S rRNA gene sequence similarity. Phylogenetic analysis based on recA, pyrH and rpoA also showed low levels of sequence similarities (72.6–96.6 %) with all species of the genus Vibrio. A multigene phylogenetic tree using concatenated sequences of the four genes (16S rRNA, rpoA, recA and pyrH) clearly showed that the new isolate is different from the currently known Vibrio species. DNA–DNA hybridization experiments revealed similarity values below 70 % with the closest related species V. ponticus DSM 16217T. Several phenotypic traits enabled the differentiation of strain E20121 from the closest phylogenetic neighbours. The DNA G+C content of strain E20121 was determined to be 47.6 mol % and the major fatty acid components identified were C16:1ω7c and/or C16:1ω6c (39.8 %), C18:1ω7c (13.6 %) and C16:0 (9.6 %). Based on genotypic, phenotypic, chemotaxonomic, phylogenetic and DNA–DNA hybridization analyses, strain E20121 is proposed to represent a novel species of the genus Vibrio for which the name Vibrio zhuhaiensis sp. nov. is proposed. The type strain is E20121T(=DSM 25602T = CCTCC AB 2011174T).  相似文献   

17.
A Gram-positive, alkaliphilic bacterium, designated strain Zby6T, was isolated from Zhabuye Lake in Tibet, China. The strain was able to grow at pH 8.0–11.0 (optimum at pH 10.0), in 0–8 % (w/v) NaCl (optimum at 3 %, w/v) and at 10–45 °C (optimum at 37 °C). Cells of the isolate were facultatively anaerobic and spore-forming rods with polar flagellum. The predominant isoprenoid quinone was MK-7, and its cell wall peptidoglycan contained meso-diaminopimelic acid. The major cellular fatty acids were iso-C15:0, C16:0 and anteiso-C15:0. The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylethanolamine. The genomic DNA G+C content of the isolate was 38.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Zby6T was a member of the genus Bacillus and most closely related to Bacillus cellulosilyticus DSM 2522T (97.7 % similarity). The DNA–DNA relatedness value between strain Zby6T and B. cellulosilyticus DSM 2522T was 59.2 ± 1.8 %. Comparative analysis of genotypic and phenotypic features indicated that strain Zby6T represents a novel species of the genus Bacillus, for which the name Bacillus alkalicola sp. nov. is proposed; the type strain is Zby6T (=CGMCC 1.10368T = JCM 17098T = NBRC 107743T).  相似文献   

18.
A Gram-positive, coccoid, non-endospore-forming actinobacterium, designated YIM C01117T, was isolated from a soil sample collected from Alu ancient cave, Yunnan province, south-west China. Based on the 16S rRNA gene sequence analysis, strain YIM C01117T was shown to belong to the genus Microlunatus, with highest sequence similarity of 97.4 % to Microlunatus soli DSM 21800T. The whole genomic DNA relatedness as shown by the DNA–DNA hybridization study between YIM C01117T and M. soli DSM 21800T had a low value (47 ± 2 %). Strain YIM C01117T was determined to contain LL-diaminopimelic acid with Gly, Glu and Ala amino acids (A3γ′ type) in the cell wall. Whole-cell hydrolysates were found to contain glucose, galactose, mannose and ribose. The major polar lipids were determined to be phosphatidylglycerol and diphosphatidylglycerol. The predominant menaquinone system present is MK-9(H4), while the major fatty acids were identified to be anteiso-C15:0 (24.1 %), iso-C16:0 (22.3 %) and iso-C15:0 (11.4 %). The G+C content of the genomic DNA was determined to be 65.9 mol%. The chemotaxonomic and genotypic data support the affiliation of the strain YIM C01117T to the genus Microlunatus. The results of physiological and biochemical tests allow strain YIM C01117T to be differentiated phenotypically from recognized Microlunatus species. Strain YIM C01117T is therefore considered to represent a novel species of the genus Microlunatus, for which the name Microlunatus cavernae sp. nov. is proposed. The type strain is YIM C01117T (= DSM 26248T = JCM 18536T).  相似文献   

19.
A bacterial strain, designated M26T, was isolated from a fish gastrointestinal tract, collected from Zhanjiang Port, South China. 16S rRNA gene sequence analysis indicated that strain M26T belongs to the subclass α-Proteobacteria, being related to the genus Paracoccus, and sharing highest sequence similarity with Paracoccus alcaliphilus JCM 7364T (98.1 %), Paracoccus huijuniae FLN-7T (97.3 %), Paracoccus stylophorae KTW-16T (97.1 %) and Paracoccus seriniphilus DSM 14827T (96.9 %). The major quinone was determined to be ubiquinone Q-10, with Q-9 and Q-8 as minor components. The major fatty acid was identified as C18:1ω7c, with smaller amounts of C18:0 and C16:0. The G+C content of the genomic DNA was determined to be 64.3 mol%. The DNA hybridization value between strain M26T and the most closely related type strain, P. alcaliphilus, was 29.0 ± 1.0 %. The results of physiological and biochemical tests and low DNA–DNA relatedness showed that the strain could be readily distinguished from closely related species. On the basis of these phenotypic and genotypic data, strain M26T is concluded to represent a novel species of the genus Paracoccus, for which the name Paracoccus siganidrum sp. nov. is proposed. The type strain is M26T (=CCTCC AB 2012865T = DSM 26381T).  相似文献   

20.
A novel nitrogen-fixing bacterium, BJ-18T, was isolated from wheat rhizosphere soil. Strain BJ-18T was observed to be Gram-positive, facultatively anaerobic, motile and rod-shaped (0.4–0.9 μm × 2.0–2.9 μm). Phylogenetic analysis based on a partial nifH gene sequence and an assay for nitrogenase activity showed its nitrogen-fixing capacity. Phylogenetic analysis based on full 16S rRNA gene sequences suggested that strain BJ-18T is a member of the genus Paenibacillus. High similarity of 16S rRNA gene sequence was found between BJ-18T and Paenibacillus peoriae DSM 8320T (99.05 %), Paenibacillus jamilae DSM 13815T (98.86 %), Paenibacillus brasiliensis DSM 13188T (98.55 %), Paenibacillus polymyxa DSM 36T (98.74 %), Paenibacillus terrae DSM 15891T (97.99 %) and Paenibacillus kribbensis JCM 11465T (97.92 %), whereas the similarity was below 96.0 % between BJ-18T and the other Paenibacillus species. DNA–DNA relatedness between strain BJ-18T and P. peoriae DSM 8320T, P. jamilae DSM 13815T, P. brasiliensis DSM 13188T, P. polymyxa DSM 36T, P. kribbensis JCM 11465T and P. terrae DSM 15891T was determined to be 43.6 ± 2.7, 34.2 ± 5.3, 47.9 ± 6.6, 36.8 ± 3.5, 27.4 ± 4.3 and 23.6 ± 4.1 % respectively. The DNA G+C content of BJ-18T was determined to be 45.8 mol %. The major fatty acid was identified as anteiso-C15:0 (67.1 %). The polar lipids present in strain BJ-18T were identified as diphosphatidylglycerol, phosphatidyl methylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. The phenotypic and genotypic characteristics, and DNA–DNA relatedness data, suggest that BJ-18T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus beijingensis sp. nov. (Type strain BJ-18T=DSM25425T=CGMCC 1.12045T) is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号