首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Strong CD4 T cell activation and proliferation are seen in susceptible mice infected with the murine retroviral inoculum, LP-BM5, which produces an immunodeficiency syndrome called murine AIDS (MAIDS). We developed a short term adoptive transfer model of MAIDS to examine the requirements for the CD4 T cell response. Naive CD4 T cells from uninfected donors responded quickly after adoptive transfer into MAIDS-infected hosts, becoming activated and proliferating within several days. Using blocking mAbs to costimulatory ligands and CD4 T cells deficient in expression of their receptors, we found that the CD4 T cell response requires CD28:B7.1/B7.2 interactions, but not CTLA4 or CD40-CD40 ligand interactions. Naive CD4 T cells did not respond in H-2M-deficient mice with MAIDS, suggesting that disease requires recognition of self peptide-MHC complexes. The self MHC-dependent division and accumulation of large numbers of CD4 T cells suggest that MAIDS involves a disruption of the balance of homeostatic signals. Supporting this hypothesis, CD4 T cells from mice with MAIDS failed to regulate the homeostatic division of naive CD4 T cells in a cotransfer model. Thus, a combination of up-regulation of costimulatory ligands and disruption of homeostatic control may be responsible for CD4 lymphoproliferation in MAIDS.  相似文献   

2.
The effect of blocking the CD28/B7 costimulatory pathway on intestinal allograft rejection was examined in mice. Murine CTLA4Ig failed to prevent the rejection of allografts transplanted into wild-type or CD4 knockout (KO) mice but did inhibit allograft rejection by CD8 KO recipients. This effect was associated with decreased intragraft mRNA for IFN-gamma and TNF-alpha and increased mRNA for IL-4 and IL-5. This altered pattern of cytokine production was not observed in allografts from murine CTLA4Ig-treated CD4 KO mice. These data demonstrate that blockade of the CD28/B7 pathway has different effects on intestinal allograft rejection mediated by CD4+ and CD8+ T cells and suggest that these T cell subsets have different costimulatory requirements in vivo. The results also suggest that the inhibition of CD4+ T cell-mediated allograft rejection by CTLA4Ig may be related to down-regulation of Th1 cytokines and/or up-regulation of Th2 cytokines.  相似文献   

3.
Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway   总被引:2,自引:0,他引:2  
The CD28/B7 costimulatory pathway is generally considered dispensable for memory T cell responses, largely based on in vitro studies demonstrating memory T cell activation in the absence of CD28 engagement by B7 ligands. However, the susceptibility of memory CD4 T cells, including central (CD62L(high)) and effector memory (T(EM); CD62L(low)) subsets, to inhibition of CD28-derived costimulation has not been closely examined. In this study, we demonstrate that inhibition of CD28/B7 costimulation with the B7-binding fusion molecule CTLA4Ig has profound and specific effects on secondary responses mediated by memory CD4 T cells generated by priming with Ag or infection with influenza virus. In vitro, CTLA4Ig substantially inhibits IL-2, but not IFN-gamma production from heterogeneous memory CD4 T cells specific for influenza hemagglutinin or OVA in response to peptide challenge. Moreover, IL-2 production from polyclonal influenza-specific memory CD4 T cells in response to virus challenge was completely abrogated by CTLA4Ig with IFN-gamma production partially inhibited. When administered in vivo, CTLA4Ig significantly blocks Ag-driven memory CD4 T cell proliferation and expansion, without affecting early recall and activation. Importantly, CTLA4Ig treatment in vivo induced a striking shift in the phenotype of the responding population from predominantly T(EM) in control-treated mice to predominantly central memory T cells in CTLA4Ig-treated mice, suggesting biased effects of CTLA4Ig on T(EM) responses. Our results identify a novel role for CD28/B7 as a regulator of memory T cell responses, and have important clinical implications for using CTLA4Ig to abrogate the pathologic consequences of T(EM) cells in autoimmunity and chronic disease.  相似文献   

4.
Blockade of the CD28/CTLA4/B7 costimulatory pathway using CTLA4-Ig has great therapeutic potential, and has been shown to prolong allograft survival in a variety of animal models. To gain further insight into the mechanism by which costimulatory blockade prevents allograft rejection, we studied cardiac allograft survival in the complete absence of B7 costimulation using mice lacking B7-1 and B7-2 (B7-1/B7-2-/- mice). To determine the role of B7 on donor vs recipient cells, we used B7-1/B7-2-/- mice as either donors or recipients of allografts. Wild-type (WT) recipients acutely reject fully allogeneic hearts from both WT and B7-1/B7-2-/- mice. In contrast, B7-1/B7-2-/- recipients allow long-term survival of grafts from both WT and B7-1/B7-2-/- mice, with minimal histologic evidence of either acute or chronic rejection in grafts harvested after 90 days. The B7-1/B7-2-/- mice acutely reject B7-1/B7-2-/- allografts if CD28 stimulation is restored by the administration of Ab to CD28 and can mount an alloresponse in mixed lymphocyte reactions. Therefore, B7-1/B7-2-/- mice are capable of generating alloresponses both in vivo and in vitro. Our results demonstrate that in the alloresponse to mouse heterotopic cardiac transplantation, B7 molecules on recipient cells rather than donor cells provide the critical costimulatory signals. The indefinite survival of allografts into B7-1/B7-2-/- recipients further shows that the absence of B7 costimulation alone is sufficient to prevent rejection.  相似文献   

5.
Dependence of the primary antiviral immune response on costimulatory interactions between CD28/CD80-86 and between CD40/CD154 (CD40 ligand) has been correlated with the extent of viral replication in two models of systemic infection, lymphocytic choriomeningitis virus and vesicular stomatitis virus. To determine the role of these costimulatory interactions in the context of an acute cytolytic, but locally replicating viral infection, herpes simplex virus (HSV) infection was assessed in mice that had the CD28/CD80-86 or CD40/CD154 interactions disrupted either genetically or with blocking reagents (CTLA4Ig and MR1, respectively). CTLA4Ig treatment greatly reduced paralysis-free survival during primary acute HSV infection. This reflected an almost total ablation of the anti-HSV CD4(+) and CD8(+) T-cell responses due to anergy and reduced cell numbers, respectively. Disruption of CD40/CD154 interactions impaired survival, but the effect was less severe than that observed in CTLA4Ig-treated mice, with reductions observed in the CD4(+) T-cell but not CD8(+) T-cell responses. These two costimulatory pathways functioned in part independently, since disruption of both further impaired survival. The dependence on these costimulatory interactions for the control of primary HSV infection may represent a more widespread paradigm for nonsystemic viruses, which have restricted sites of replication and which employ immunoevasive measures.  相似文献   

6.
In addition to TCR-derived signals, costimulatory signals derived from stimulation of the CD28 molecule by its natural ligand, B7, have been shown to be required for CD4+8- T cell activation. We investigate the ability of B7 to provide costimulatory signals necessary to drive proliferation and differentiation of virgin CD4-8+ T-cells that express a transgenic TCR specific for the male (H-Y) Ag presented by H-2Db class I MHC molecules. Virgin male-specific CD4-8+ T cells can be activated either with B7 transfected chinese hamster ovary (CHO) cells and T3.70, a mAb specific for the transgenic TCR-alpha chain that is associated with male-reactivity, or by male dendritic cells (DC). Activated CD4-8+ T cells proliferated in the absence of exogenously added IL-2. IL-2 activity was detected in supernatants of CD4-8+T3.70+ cells that were stimulated with T3.70 and B7+CHO cells. The response of CD4-8+T3.70+ cells to T3.70/B7+CHO or to male DC stimulation were inhibited by CTLA4Ig, a fusion protein comprising the extracellular portion of CTLA4 and human IgG C gamma 1. It has been previously shown that CTLA4Ig binds B7 with high affinity. Staining with CTLA4Ig revealed that DC express about 50 times more B7 than CD4-8+ T cells. CTLA4Ig also specifically blocked the proliferation of male-reactive cells in vivo. We have also used an in vitro deletion assay whereby immature CD4+8+ thymocytes expressing the transgenic male-specific TCR are deleted by overnight incubation with either immobilized T3.70 or male DC to investigate the participation of the CD28/B7 pathway in the negative selection of immature thymocytes. Staining with B7Ig established that both immature murine CD4+8+ and mature CD4-8+ thymocytes express a high level of CD28. However, despite the high expression of CD28 on CD4+8+ thymocytes, it was found that deletion of CD4+8+ thymocytes expressing the male-specific TCR by the T3.70 mAb was not inhibited by B7+CHO cells. Furthermore, the deletion of these thymocytes by DC also was not inhibited by CTLA4Ig. These findings provide evidence that although signaling through CD28 can costimulate a primary anti-male response in mature CD4-8+ T cells, the CD28/B7 pathway does not appear to participate in the negative selection of immature CD4+8+ thymocytes.  相似文献   

7.
CD8+ T cells were previously shown to be important in preventing lymphoproliferation and immunodeficiency following infection of murine AIDS (MAIDS)-resistant mice with the LP-BM5 mixture of murine leukemia viruses. To further evaluate the mechanisms contributing to MAIDS resistance, we studied mice lacking CD8+ T cells or deficient in perforin due to knockout of the beta2-microglobulin (beta2M) or perforin gene, respectively. In contrast to wild-type, MAIDS-resistant controls, B10.A mice homozygous for the beta2M mutation and B10.D2 mice homozygous for the perforin mutation were diagnosed as having MAIDS by 5 to 8 weeks after infection by the criteria of lymphoproliferation, impaired proliferative responses to mitogens, and changes in cell populations as judged by histopathology and flow cytometry. Unexpectedly, there was no progression of lymphoproliferation through 24 weeks, even though immune functions were severely compromised. Expression of the defective virus responsible for MAIDS was enhanced in spleens of the knockouts in comparison with wild-type mice. These results demonstrate that perforin-dependent functions of CD8+ T cells contribute to MAIDS resistance but that other, non-CD8-dependent mechanisms are of equal or greater importance.  相似文献   

8.
Evidence suggests that Pseudomonas aeruginosa stromal keratitis and corneal perforation (susceptibility) is a CD4(+) T cell-regulated inflammatory response following experimental P. aeruginosa infection. This study examined the role of Langerhans cells (LC) and the B7/CD28 costimulatory pathway in P. aeruginosa-infected cornea and the contribution of costimulatory signaling by this pathway to disease pathology. After bacterial challenge, the number of LC infiltrating the central cornea was compared in susceptible C57BL/6 (B6) vs resistant (cornea heals) BALB/c mice. LC were more numerous at 1 and 6 days postinfection (p.i.), but were similar at 4 days p.i., in susceptible vs resistant mice. Mature, B7 positive-stained LC in the cornea and pseudomonas Ag-associated LC in draining cervical lymph nodes also were increased significantly p.i. in susceptible mice. To test the relevance of these data, B6 mice were treated systemically and subconjunctivally with neutralizing B7 (B7-1/B7-2) mAbs. Treatment decreased corneal disease severity and reduced significantly the number of B7-positive cells as well as the recruitment and activation of CD4(+) T cells in the cornea. IFN-gamma mRNA levels also were decreased significantly in the cornea and in draining cervical lymph nodes of mAb-treated mice. When CD28(-/-) animals were tested, they exhibited a less severe disease response (no corneal perforation) than wild-type B6 mice and had a significantly lower delayed-type hypersensitivity response to heat-killed pseudomonas Ag. These results support a critical role for B7/CD28 costimulation in susceptibility to P. aeruginosa ocular infection.  相似文献   

9.
Hypersensitivity pneumonitis (HP) is characterized by an influx of activated T cells in the lungs. The CD28/B7 system provides costimulatory signals essential for complete T cell activation and differentiation. We have previously demonstrated that alveolar macrophages from patients with HP have an up-regulated expression of B7 molecules. In the present study, we investigated the effect of i. p. administration of CTLA4-Ig, a CD28/B7 antagonist, on the lung inflammation of mice inoculated with Saccharoplyspora rectivirgula (SR), a major causative agent of HP. Five groups of C57BL/6 mice were intranasally instilled with SR or saline for 3 consecutive days per wk during 3 wk. CTLA4-Ig was administered starting either after 1 wk of SR challenge or 6 h before the first antigenic exposure and continued during the whole period of sensitization. A control-IgG was given similarly during the 3 wk of SR exposure. The groups included: 1, saline; 2, SR; 3, SR + control-Ig; 4, SR + CTLA4-Ig for the last 2 wk; and 5, SR + CTLA4-Ig for 3 wk. CTLA4-Ig treatment markedly decreased lung inflammation as shown by significantly fewer inflammatory cells in the bronchoalveolar lavage and in lung tissue and reduced SR-specific serum and bronchoalveolar lavage Ig levels. Production of IL-4, IL-10, and IFN-gamma by IL-2-stimulated pulmonary T cells was also decreased by CTLA4-Ig. Administration of CTLA4-Ig did not affect the SR-induced up-regulation of B7-2 expression. These results show that blockade of CD28/B7 interactions by CTLA4-Ig inhibits SR-induced lung inflammation and immune response to SR Ag in mice and may provide a novel approach in the treatment of HP.  相似文献   

10.
Costimulatory molecules play critical roles in the induction and effector function of T cells. More recent studies reveal that costimulatory molecules enhance clonal deletion of autoreactive T cells as well as generation and homeostasis of the CD25(+)CD4(+) regulatory T cells. However, it is unclear whether the costimulatory molecules play any role in the proliferation and differentiation of T cells before they acquire MHC-restricted TCR. In this study, we report that targeted mutations of B7-1 and B7-2 substantially reduce the proliferation and survival of CD4(-)CD8(-) (double-negative (DN)) T cells in the thymus. Perhaps as a result of reduced proliferation, the accumulation of RAG-2 protein in the DN thymocytes is increased in B7-deficient mice, which may explain the increased expression of TCR gene and accelerated transition of CD25(+)CD44(-) (DN3) to CD25(-)CD44(-) (DN4) stage. Qualitatively similar, but quantitatively less striking effects were observed in mice with a targeted mutation of CD28, but not CTLA4. Taken together, our results demonstrate that the development of DN in the thymus is subject to modulation by the B7-CD28 costimulatory pathway.  相似文献   

11.
CMV establishes a lifelong persistent infection, and viral immune-modulating strategies are important in facilitating this. A particularly diverse CD8 T cell response develops as a result of this host-virus détente, with the CMV-specific memory T cell pool displaying unique functions and phenotypes. To gain insight into the factors that regulate CMV-specific CD8 T cell responses, we examined the influence of the B7-CD28 costimulatory pathway on magnitude, kinetics, and phenotype. Initial expansion of mouse CMV-specific CD8 T cells that establish stable memory pools was severely lower in mice lacking B7-CD28 signaling, and the resulting memory levels also remained reduced during persistent/latent infection. In contrast, expansion of CD8 T cells that undergo memory inflation during chronic infection was less affected in the absence of B7-CD28 costimulatory signals, eventually reaching the levels seen in wild-type mice at later times. Regardless of their differential requirements for B7-CD28 signals, both stable and inflationary memory T cell populations showed normal cytotoxic capacity. These results reveal that B7-CD28 costimulation differentially regulates the magnitude and kinetics of the multifaceted CD8 T cell response that develops during CMV infection.  相似文献   

12.
Ag-specific T cell activation requires the engagement of T cell receptor (TCR) with antigen in the context of MHC, and the engagement of appropriate costimulatory molecules. It is well established that B7/CD28-CTLA4 costimulatory pathway plays an important role in the induction of T helper (Th) cells in T-cell dependent immune reactions. In this study, we evaluated the effects of blocking the costimulatory pathway by systemic administration of CTLA4-Ig during repeated nasal antigen challenges in systemically presensitized mouse. The antigen-induced early phase nasal symptoms, nasal hyperresponsiveness to histamine and nasal eosinophilia were significantly suppressed by CTLA4-Ig treatment. Elevation of serum level of antigen-specific IgE, but not IgG1 or IgG2a was inhibited by the treatment. In relation to cytokine levels in the tissue extracts of the nasal mucosa, an up-regulation of IL-4 was significantly inhibited, however, the levels of IL-5 and IFN-gamma were not affected by the treatment. These results suggest that B7/CD28-CTLA4 costimulatory pathway plays an important role in on-going Th2-related allergic reactions in the nose.  相似文献   

13.
CD28-specific antibody prevents graft-versus-host disease in mice   总被引:16,自引:0,他引:16  
The costimulatory molecules B7-1 and B7-2 regulate T cell activation by delivering activation signals through CD28 and inhibitory signals through CTLA4. Graft-vs-host disease (GVHD) is caused by activated donor T cells. Previously, we showed that CD28-deficient donor T cells induced less-severe GVHD than wild-type donor T cells, suggesting that CD28 signals exacerbate GVHD. In this paper we demonstrate that CTLA4 signals attenuate the severity of GVHD. Targeting the CD28 receptor with a specific mAb modulates the receptor in vivo, inhibits donor T cell expansion, and prevents GVHD. CTLA4 signaling was necessary for this effect because treatment with a soluble ligand that blocks binding of B7 to both CD28 and CTLA4 did not prevent GVHD as effectively as anti-CD28 mAb. These results support the current model of T cell costimulation in which CD28 signals amplify GVHD while CTLA4 signals inhibit GVHD, providing evidence that selective targeting of CD28 might be a better therapeutic strategy for inducing immunological tolerance than blocking the ligands for both CD28 and CTLA4.  相似文献   

14.
《Seminars in Virology》1996,7(2):103-111
Costimulation plays a pivotal role in T-cell activation, since engagement of the T-cell receptor in the absence of costimulatory signals can lead to T-cell anergy. The B7-CD28/CTLA4 costimulatory pathway can provide a potent costimulatory signal. This article focuses on the B7-CD28/CTLA4 pathway, reviewing aspects of costimulation relevant to the development of anti-viral immune responses and summarizing vaccination strategies employing costimulatory molecules. In addition, this article discusses the importance of regulated expression of costimulatory molecules and describes how viruses can modulate the expression of costimulatory molecules, which may contribute to immune dysfunction.  相似文献   

15.
STAT4(-/-) mice have impaired type 1 T cell differentiation, whereas STAT6(-/-) mice fail to generate type 2 responses. The role of type 1 and type 2 T cell differentiation in acute cardiac allograft rejection and in the induction of tolerance was examined in wild-type, STAT4(-/-), and STAT6(-/-) recipients. All recipients rejected the grafts promptly. Analysis of in situ cytokine gene expression in the allografts confirmed decreased levels of IFN-gamma in STAT4(-/-) recipients and undetectable levels of IL-4 and IL-5 in STAT6(-/-) mice. Blockade of the CD28/B7 costimulatory pathway prolonged cardiac graft survival for >100 days in 100% of wild-type and STAT4(-/-) mice. However, 14% of CTLA4-Ig-treated STAT6(-/-) mice rejected their grafts between 20 and 100 days. Moreover, of those animals followed past 100 days, 60% of the STAT6(-/-) mice rejected their grafts. Splenocytes harvested on day 145 posttransplant from CTLA4-Ig-treated rejecting STAT6(-/-) recipients were transfused into syngeneic SCID mice transplanted with donor or third party cardiac allografts. Both donor and third party grafts were rejected, indicating that the initial graft loss may be due to an immunological rejection. In contrast, when splenocytes from CTLA4-Ig-treated wild-type or nonrejecting STAT6(-/-) mice were transferred into SCID recipients, donor allografts were accepted, but third party hearts were rejected. Thus, long-term prolongation of cardiac allograft survival by CTLA4-Ig is STAT4-independent but, at least in part, STAT6-dependent. These data suggest that the balance of type 1 and type 2 T lymphocyte differentiation is not critical for acute rejection but influences the robust tolerance induced by CD28/B7 blockade in this model.  相似文献   

16.
Disease progression of feline immunodeficiency virus (FIV) infection is characterized by up-regulation of B7.1 and B7.2 costimulatory molecules and their ligand CTLA4 on CD4(+) and CD8(+) T cells. The CD4(+)CTLA4(+)B7(+) phenotype described in FIV(+) cats is reminiscent of CD4(+)CD25(+)CTLA4(+) cells, a phenotype described for immunosuppressive T regulatory (Treg) cells. In the present study, we describe the phenotypic and functional characteristics of CD4(+)CD25(+) T cells in PBMC and lymph nodes (LN) of FIV(+) and control cats. Similar to Treg cells, feline CD4(+)CD25(+) but not CD4(+)CD25(-) T cells directly isolated from LN of FIV(+) cats do not produce IL-2 and fail to proliferate in response to mitogen stimulation. Unstimulated CD4(+)CD25(+) T cells from FIV(+) cats significantly suppress the proliferative response and the IL-2 production of Con A-stimulated autologous CD4(+)CD25(-) T cells compared with unstimulated CD4(+)CD25(+) T cells from FIV(-) cats. Flow-cytometric analysis confirmed the apparent activation phenotype of the CD4(+)CD25(+) cells in LN of chronically FIV(+) cats, because these cells showed significant up-regulation of expression of costimulatory molecules B7.1, B7.2, and CTLA4. These FIV-activated, anergic, immunosuppressive CD25(+)CTLA4(+)B7(+)CD4(+) Treg-like cells may contribute to the progressive loss of T cell immune function that is characteristic of FIV infection.  相似文献   

17.
Long-term resistance to Toxoplasma gondii is dependent on the development of parasite-specific T cells that produce IFN-gamma. CD28 is a costimulatory molecule important for optimal activation of T cells, but CD28(-/-) mice are resistant to T. gondii, demonstrating that CD28-independent mechanisms regulate T cell responses during toxoplasmosis. The identification of the B7-related protein 1/inducible costimulator protein (ICOS) pathway and its ability to regulate the production of IFN-gamma suggested that this pathway may be involved in the CD28-independent activation of T cells required for resistance to T. gondii. In support of this hypothesis, infection of wild-type or CD28(-/-) mice with T. gondii resulted in the increased expression of ICOS by activated CD4(+) and CD8(+) T cells. In addition, both costimulatory pathways contributed to the in vitro production of IFN-gamma by parasite-specific T cells and when both pathways were blocked, there was an additive effect that resulted in almost complete inhibition of IFN-gamma production. Although in vivo blockade of the ICOS costimulatory pathway did not result in the early mortality of wild-type mice infected with T. gondii, it did lead to increased susceptibility of CD28(-/-) mice to T. gondi associated with reduced serum levels of IFN-gamma, increased parasite burden, and increased mortality compared with the control group. Together, these results identify a critical role for ICOS in the protective Th1-type response required for resistance to T. gondii and suggest that ICOS and CD28 are parallel costimulatory pathways, either of which is sufficient to mediate resistance to this intracellular pathogen.  相似文献   

18.
Mice lacking CTLA-4 die at an age of 2-3 wk due to massive lymphoproliferation, leading to lymphocytic infiltration and destruction of major organs. The onset of the lymphoproliferative disease can be delayed by treatment with murine CTLA4Ig (mCTLA4Ig), starting day 12 after birth. In this study, we have characterized the T cells present in CTLA-4-deficient mice before and after mCTLA4Ig treatment. The T cells present in CTLA-4-deficient mice express the activation markers, CD69 and IL-2R; down-regulate the lymphoid homing receptor, CD62L; proliferate spontaneously in vitro and cannot be costimulated with anti-CD28 mAb consistent with a hyperactivated state. The T cells from CTLA-4-deficient mice survive longer in culture correlating with higher expression of the survival factor, Bcl-xL, in these cells. Most significantly, the CD4+ T cell subset present in CTLA-4-deficient mice secretes high levels of IL-4 and IL-5 upon TCR activation. Treatment of CTLA-4-deficient mice treated with mCTLA4Ig reverses the activation and hyperproliferative phenotype of the CTLA-4-deficient T cells and restores the costimulatory activity of anti-CD28 mAb. Furthermore, T cells from mCTLA4Ig-treated mice are not skewed toward a Th2 cytokine phenotype. Thus, CTLA-4 regulates CD28-dependent peripheral activation of CD4+ T cells. This process results in apoptosis-resistant, CD4+ T cells with a predominantly Th2 phenotype that may be involved in the lethal phenotype in these animals.  相似文献   

19.
Antibody and cytotoxic T-lymphocyte (CTL) responses have critical roles in eliminating many viral infections. In addition to stimulation of the T-cell receptor, T cells require costimulatory signals to respond optimally. We evaluated the role of B7 costimulatory molecules (B7-1 and B7-2) in the immune response to viral infection using vesicular stomatitis virus (VSV) and mice lacking either B7-1 or B7-2 or both molecules. Mice lacking both B7-1 and B7-2 had essentially no anti-VSV immunoglobulin G1 (IgG1) response, decreased IgG2a responses, and normal IgM responses, while mice lacking either B7-1 or B7-2 had unaltered anti-VSV antibody responses compared to wild-type mice. Depletion of CD4(+) cells further reduced the IgG2a response in mice lacking both B7 molecules, suggesting that CD4(-) cells may supply help for IgG2a in the absence of B7 costimulation. The absence of both B7 molecules profoundly reduced generation of both primary and secondary VSV-specific class I major histocompatibility complex (MHC)-restricted CTL, whereas VSV-specific CTL responses in mice lacking either B7-1 or B7-2 were similar to those of wild-type animals. Class I MHC-restricted CTL in wild-type mice were not dependent on CD4(+) cells, suggesting that the failure of CTL in the absence of B7s is due to a lack of B7 costimulation directly to the CD8(+) CTL. These data demonstrate that B7-1 and B7-2 have critical, overlapping functions in the antibody and CTL responses to this viral infection.  相似文献   

20.
In this study, we show that costimulation required for mucosal IgA responses is strikingly different from that needed for systemic responses, including serum IgA. Following oral immunization with cholera toxin (CT) adjuvant we found that whereas CTLA4-H1 transgenic mice largely failed to respond, CD28-/- mice developed near normal gut mucosal IgA responses but poor serum Ab responses. The local IgA response was functional in that strong antitoxic protection developed in CT-immunized CD28-/- mice. This was in spite of the fact that no germinal centers (GC) were observed in the Peyer's patches, spleen, or other peripheral lymph nodes. Moreover, significant somatic hypermutation was found in isolated IgA plasma cells from gut lamina propria of CD28-/- mice. Thus, differentiation to functional gut mucosal IgA responses against T cell-dependent Ags does not require signaling through CD28 and can be independent of GC formations and isotype-switching in Peyer's patches. By contrast, serum IgA responses, similar to IgG-responses, are dependent on GC and CD28. However, both local and systemic responses are impaired in CTLA4-Hgamma1 transgenic mice, indicating that mucosal IgA responses are dependent on the B7-family ligands, but require signaling via CTLA4 or more likely a third related receptor. Therefore, T-B cell interactions leading to mucosal as opposed to serum IgA responses are uniquely regulated and appear to represent separate events. Although CT is known to strongly up-regulate B7-molecules, we have demonstrated that it acts as a potent mucosal adjuvant in the absence of CD28, suggesting that alternative costimulatory pathways are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号