首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A large set of 254 introgression lines in an elite indica genetic background were evaluated for grain yield (GY) and related traits under the irrigated (control) and drought (stress) conditions in two consecutive years for genetic dissection of adaptive strategies of rice to water stress. A total of 36 quantitative trait loci (QTLs) affecting heading date (HD), plant height (PH), GY and yield components were identified and most QTLs showed pronounced differential expression either qualitatively or quantitatively in response to drought. These QTLs could be grouped into three major types based on their behaviors under control and stress conditions. Type I included 12 QTLs that expressed under both the stress and non-stress conditions. Type II comprised 17 QTLs that expressed under irrigation but not under stress. Type III included seven QTLs that were apparently induced by stress. The observation that the Lemont (japonica) alleles at all HD QTLs except QHd5 resulted in early heading under stress appeared to be responsible for the putative adaptation of Lemont to drought by escaping, whereas the Teqing (indica) alleles at most PH/GY QTLs were consistently associated with increased yield potential and trait stability and thus contributed to DT. Our result that most DT QTLs were non-allelic with QTLs for drought escaping suggests that the two adaptive strategies in the parental lines are under possible negative regulation of two largely non-overlapping genetic systems.  相似文献   

3.
Quantitative trait loci (QTLs) for drought tolerance (DT) can be readily identified in available databases and in this paper, these QTLs were summarized in the form of a consensus map. An in silico strategy was then deployed to mine for candidate genes associated with DT QTLs using rice dbEST and rice genome databases. DT QTLs on rice chromosomes 1, 2, 4, 8, and 9 were selected to test the method. The result showed candidate genes associated with DT could be readily identified.  相似文献   

4.
5.
Drought is a major constraint to rice (Oryza sativa L.) production in rainfed and poorly irrigated environments. Identifying genomic regions influencing the response of yield and its components to water deficits will aid our understanding of the genetic mechanism of drought tolerance (DT) of rice and the development of DT varieties. Grain yield (GY) and its components of a recombinant inbred population developed from a lowland rice and an upland rice were investigated under different water levels in 2003 and 2004 in a rainout DT screening facility. Correlation and path analysis indicated that spikelet fertility (SF) was particularly important for grain yield with direct effect (P=0.60) under drought stress, while spikelet number per panicle (SN) contributed the most to grain yield (P=0.41) under well-watered condition. A total of 32 quantitative trait loci (QTLs) for grain yield and its components were identified. The phenotypic variation explained by individual QTLs varied from 1.29% to 14.76%. Several main effect QTLs affecting SF, 1,000-grain weight (TGW), panicle number (PN), and SN were mapped to the same regions on chromosome 4 and 8. These QTLs were detected consistently across 2 years and under both water levels in this study. Several digenic interactions among yield components were also detected. The identification of genomic regions associated with GY and its components under stress will be useful to improve drought tolerance of rice by marker-aided approaches.G. H. Zou and H. W. Mei contribute equally to this work.  相似文献   

6.
7.
8.
Aquaporins, members of major intrinsic proteins (MIPs), transport water across cellular membranes and play vital roles in all organisms. Adversities such as drought, salinity, or chilling affect water uptake and transport, and numerous plant MIPs are reported to be differentially regulated under such stresses. However, MIP genes have been not yet been characterized in wheat, the largest cereal crop. We have identified 24 PIP and 11 TIP aquaporin genes from wheat by gene isolation and database searches. They vary extensively in lengths, numbers, and sequences of exons and introns, and sequences and cellular locations of predicted proteins, but the intron positions (if present) are characteristic. The putative PIP proteins show a high degree of conservation of signature sequences or residues for membrane integration, water transport, and regulation. The TIPs are more diverse, some with potential for water transport and others with various selectivity filters including a new combination. Most genes appear to be expressed as expressed sequence tags, while two are likely pseudogenes. Many of the genes are highly identical to rice but some are unique, and many correspond to genes that show differential expression under salinity and/or drought. The results provide extensive information for functional studies and developing markers for stress tolerance. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The genetic nature of tree adaptation to drought stress was examined by utilizing variation in the drought response of a full-sib second generation (F(2)) mapping population from a cross between Populus trichocarpa (93-968) and P. deltoides Bart (ILL-129) and known to be highly divergent for a vast range of phenotypic traits. We combined phenotyping, quantitative trait loci (QTL) analysis and microarray experiments to demonstrate that 'genetical genomics' can be used to provide information on adaptation at the species level. The grandparents and F(2) population were subjected to soil drying, and contrasting responses to drought across genotypes, including leaf coloration, expansion and abscission, were observed, and QTL for these traits mapped. A subset of extreme genotypes exhibiting extreme sensitivity and insensitivity to drought on the basis of leaf abscission were defined, and microarray experiments conducted on these genotypes and the grandparent species. The extreme genotype groups induced a different set of genes: 215 and 125 genes differed in their expression response between groups in control and drought, respectively, suggesting species adaptation at the gene expression level. Co-location of differentially expressed genes with drought-specific and drought-responsive QTLs was examined, and these may represent candidate genes contributing to the variation in drought response.  相似文献   

10.
11.
12.
13.
14.
不同发育阶段水稻苗高的QTL分析   总被引:11,自引:0,他引:11  
包劲松  何平  夏英武  陈英  朱立煌 《遗传》1999,21(5):38-40
分析了不同发育阶段控制水稻苗高的QTL,用5个阶段和4个净增长量的数据共检测到9个QTL,分别位于染色体1,4,6,7,8,11,和12号上。SH-4是主基因,它在各个阶段都表达,对苗高的贡献率在20%以上。结果表明,数量性状的发育或形态建成是由数量性状位点基因选择性表达的结果。  相似文献   

15.
16.
17.
High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Δ13C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

18.

Background  

Identification of genes underlying drought tolerance (DT) quantitative trait loci (QTLs) will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL.  相似文献   

19.
20.
Localizing genes that contribute to drought avoidance in a quantitative way should enable the exploitation of these genes in breeding through marker-assisted selection, and may lead to the discovery of gene identity and function. Between 110 and 176 F6 recombinant inbred lines from a mapping population derived from a cross of upland rice varieties Bala and Azucena have been evaluated for indicators of drought avoidance in sites in the Philippines and West Africa over two dry seasons. A molecular map with 102 RFLP, 34 AFLP and six microsatellite markers has been used to map (by composite interval mapping) quantitative trait loci (QTLs) for the visual scores of leaf rolling and leaf drying and leaf relative water content. QTLs were mapped for each site and across sites. A total of 17 regions were identified which contained QTLs with a LOD score greater than 3.2. For leaf rolling, Bala was the parent contributing the majority of positive alleles whilst for the other traits, Bala and Azucena contributed more evenly. Six of the 17 regions influenced more than one trait, explaining the phenotypic correlations between traits that were observed. Three QTLs appeared to be specific to the Philippines experiments. One QTL had opposing effects in the Philippines and West Africa. QTLs for relative water content were detected on chromosome 8, congruent with an osmotic adjustment QTL identified in another population. Only three of the QTLs identified here have not been reliably identified in the two other populations that have been screened for drought avoidance. By using several populations assessed for drought avoidance in different sites, the distribution and utility of QTLs for drought avoidance in rice is being elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号