首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Molecular mechanisms for the dorso-ventral patterning and interventricular septum formation in the embryonic heart are unknown. To investigate a role of Hand1/eHAND in cardiac chamber formation, we generated Hand1/eHAND knock-in mice where Hand1/eHAND cDNA was placed under the control of the MLC2V promoter. In Hand1/eHAND knock-in mice, the outer curvature of the right and left ventricles expanded more markedly. Moreover, there was no interventricular groove or septum formation, although molecularly, Hand1/eHAND knock-in hearts had two ventricles. However, the morphology of the inner curvature of the ventricles, the atrioventricular canal, and the outflow tract was not affected by Hand1/eHAND expression. Furthermore, expression of Hand1/eHAND in the whole ventricles altered the expression patterns of Chisel, ANF, and Hand2/dHAND but did not affect Tbx5 expression. In contrast, the interventricular septum formed normally in transgenic embryos overexpressing Hand1/eHAND in the right ventricle but not in the boundary region. These results suggested that Hand1/eHAND is involved in expansion of the ventricular walls and that absence of Hand1/eHAND expression in the boundary region between the right and left ventricles may be critical in the proper formation of the interventricular groove and septum. Furthermore, Hand1/eHAND is not a master regulatory gene that specifies the left ventricle myocyte lineage but may control the dorso-ventral patterning in concert with additional genes.  相似文献   

2.
In the forming vertebrate heart, bone morphogenetic protein signaling induces expression of the early cardiac regulatory gene nkx-2.5. A similar regulatory interaction has been defined in Drosophila embryos where Dpp signaling mediated by the Smad homologues Mad and Medea directly regulates early cardiac expression of tinman. A conserved cluster of Smad consensus binding sequences was identified in early cardiac regulatory sequences of the mouse nkx-2.5 gene. The importance of the nkx-2.5 Smad consensus region in early cardiac gene expression was examined in transgenic mice and in cultured mouse embryos. In transgenic mice, deletion of the Smad consensus region delays induction of embryonic DeltaSmadnkx-2.5/lacZ gene expression during early heart formation. Induction of DeltaSmadnkx-2.5/lacZ expression is also delayed in the outflow tract myocardium and visceral mesoderm. Targeted mutation of the three Smad consensus sequences inhibited nkx-2.5/lacZ expression in the cardiac crescent, demonstrating a specific requirement for the Smad consensus sites in early cardiac gene induction. Cultured DeltaSmadnkx-2.5/lacZ transgenic mouse embryos also exhibit delayed induction of transgene expression. In the four-chambered heart, deletion of the Smad consensus region resulted in expanded DeltaSmadnkx-2.5/lacZ transgene expression. Thus, the nkx-2.5 Smad consensus region can have positive or negative regulatory function, depending on the developmental context and cellular environment.  相似文献   

3.
4.
Notch signaling is essential for ventricular chamber development   总被引:1,自引:0,他引:1  
Ventricular chamber morphogenesis, first manifested by trabeculae formation, is crucial for cardiac function and embryonic viability and depends on cellular interactions between the endocardium and myocardium. We show that ventricular Notch1 activity is highest at presumptive trabecular endocardium. RBPJk and Notch1 mutants show impaired trabeculation and marker expression, attenuated EphrinB2, NRG1, and BMP10 expression and signaling, and decreased myocardial proliferation. Functional and molecular analyses show that Notch inhibition prevents EphrinB2 expression, and that EphrinB2 is a direct Notch target acting upstream of NRG1 in the ventricles. However, BMP10 levels are found to be independent of both EphrinB2 and NRG1 during trabeculation. Accordingly, exogenous BMP10 rescues the myocardial proliferative defect of in vitro-cultured RBPJk mutants, while exogenous NRG1 rescues differentiation in parallel. We suggest that during trabeculation Notch independently regulates cardiomyocyte proliferation and differentiation, two exquisitely balanced processes whose perturbation may result in congenital heart disease.  相似文献   

5.
We transiently expressed a proapoptotic protein, Nip3a, by a heart-specific BMP4 promoter in zebrafish embryos and generated two variants of embryos with abnormal heart phenotypes (A and B). Embryos with phenotype A heart defects showed hypoplastic or elongated ventricles, elongated or enlarged atriums with no normal cardiac looping resulting a significant longer SV-BA distance, and bradycardia at 48 h post-fertilization (hpf). Embryos with phenotype B heart defects showed an enlarged fluid-filled pericardium, severe hypoplasia, non-contracting ventricles, and elongated or enlarged slowly beating atriums with no normal looping. Histological sections further revealed the absence of a proper atrioventricular boundary and no endocardial cells lining this region in both 48- and 72-hpf Nip3a-overexpressing embryos, implicating defective endocardial cushion formation. These phenotypes are reminiscent of atrioventricular canal defects in humans. In addition, induced apoptotic myocardium cells were clustered in the presumptive atrioventricular boundary as well as in the adjacent ventricle and atrium of 48- and 72-hpf Nip3a-overexpressing embryos. Nip3a expression was readily detected in 80% epiboly BMP4-Nip3a-injected embryos, and defects in heart development were observed in both the linear heart tube and subsequent chamber formation stages. These results showed that myocyte apoptosis is a universal pathogenic factor for congenital heart failure using zebrafish as a model organism.  相似文献   

6.
7.
8.
9.
10.
Saito Y  Kojima T  Takahashi N 《PloS one》2012,7(3):e32991
During mouse embryogenesis, proper formation of the heart and liver is especially important and is crucial for embryonic viability. In this study, we showed that Mab21l2 was expressed in the trabecular and compact myocardium, and that deletion of Mab21l2 resulted in a reduction of the trabecular myocardium and thinning of the compact myocardium. Mab21l2-deficient embryonic hearts had decreased expression of genes that regulate cell proliferation and apoptosis of cardiomyocytes. These results show that Mab21l2 functions during heart development by regulating the expression of such genes. Mab21l2 was also expressed in the septum transversum mesenchyme (STM). Epicardial progenitor cells are localized to the anterior surface of the STM (proepicardium), and proepicardial cells migrate onto the surface of the heart and form the epicardium, which plays an important role in heart development. The rest of the STM is essential for the growth and survival of hepatoblasts, which are bipotential progenitors for hepatocytes and cholangiocytes. Proepicardial cells in Mab21l2-deficient embryos had defects in cell proliferation, which led to a small proepicardium, in which α4 integrin expression, which is essential for the migration of proepicardial cells, was down-regulated, suggesting that defects occurred in its migration. In Mab21l2-deficient embryos, epicardial formation was defective, suggesting that Mab21l2 plays important roles in epicardial formation through the regulation of the cell proliferation of proepicardial cells and the migratory process of proepicardial cells. Mab21l2-deficient embryos also exhibited hypoplasia of the STM surrounding hepatoblasts and decreased hepatoblast proliferation with a resultant loss of defective morphogenesis of the liver. These findings demonstrate that Mab21l2 plays a crucial role in both heart and liver development through STM formation.  相似文献   

11.
Recent evidence that the heart is not a terminally-differentiated organ has provided more credence to investigations of pathways involved in inducing cardiomyocyte (CM) hyperplasia as a therapy for heart disease. Here, we leveraged zebrafish as a novel vertebrate model of cardiomyopathy to explore the therapeutic potential based on the Wnt/β-catenin signaling. In the anemia-induced zebrafish model of cardiomyopathy (tr265), we detected differently regulated CM hyperplasia and CM hypertrophy in the compact region and the trabecular region. To assess the effects of the Wnt/β-catenin pathway on these two regions, the anemia line was crossed with heat shock-inducible transgenic fish to upregulate or downregulate the pathway. Upregulation resulted in increased cardiomyocyte hyperplasia in the heart and increased cardiomyocyte hypertrophy in the trabecular region, while downregulation resulted in reduced cardiomyocyte hyperplasia in the heart and reduced cardiomyocyte hypertrophy in the trabecular region. Importantly, upregulation of the pathway resulted in improved fish survival, while downregulation decreased it. In summary, our data suggested that (1) the compact region and the trabecular region respond differently during cardiac remodeling; (2) activation of the Wnt/β-catenin pathway might exert a cardioprotective function via promoting cardiomyocyte hyperplasia.  相似文献   

12.
13.
Neural crest-derived structures that depend critically upon expression of the basic helix-loop-helix DNA binding protein Hand2 for normal development include craniofacial cartilage and bone, the outflow tract of the heart, cardiac cushion, and noradrenergic sympathetic ganglion neurons. Loss of Hand2 is embryonic lethal by E9.5, obviating a genetic analysis of its in-vivo function. We have overcome this difficulty by specific deletion of Hand2 in neural crest-derived cells by crossing our line of floxed Hand2 mice with Wnt1-Cre transgenic mice. Our analysis of Hand2 knock-out in neural crest-derived cells reveals effects on development in all neural crest-derived structures where Hand2 is expressed. In the autonomic nervous system, conditional disruption of Hand2 results in a significant and progressive loss of neurons as well as a significant loss of TH expression. Hand2 affects generation of the neural precursor pool of cells by affecting both the proliferative capacity of the progenitors as well as affecting expression of Phox2a and Gata3, DNA binding proteins important for the cell autonomous development of noradrenergic neurons. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting differentiation and cell type-specific gene expression in neural crest-derived noradrenergic sympathetic ganglion neurons. Hand2 has a pivotal function in a non-linear cross-regulatory network of DNA binding proteins that affect cell autonomous control of differentiation and cell type-specific gene expression.  相似文献   

14.
We examined the activity of the bone morphogenetic protein 4 (BMP4) promoter in zebrafish embryos via transient and stable transgenic expression analyses in order to obtain a better understanding of the regulation of BMP4 tissue-specific expression. Transient expression studies showed that the 9.0-kb BMP4 promoter/upstream region drove green fluorescent protein (GFP) expression mainly in the heart. Deletion analyses indicated the existence of multiple regulatory elements in the 7.5-kb BMP4 promoter/proximal upstream region. In addition, a coinjection experiment further demonstrated the 2.4-kb Bgl II-Hind III DNA region contains major positive regulatory elements. In addition, stable transgenic lines were established to further confirm the heart-specificity of this segment in BMP4 promoter. The results showed that GFP was mainly localized in the myocardium of developing ventricles of 48-hpf (hours postfertilization), 72-hpf, and 100-hpf transgenic F(1) embryos. Together, these results indicate that the 7.5-kb BMP4 promoter/proximal upstream region specifically contains regulatory elements for BMP4 expression in the heart, while regulatory elements for other endogenous BMP4-expressing tissues may reside in more distal regions and/or in introns.  相似文献   

15.
16.
The most obvious segmental structures in the vertebrate embryo are somites: transient structures that give rise to vertebrae and much of the musculature. In zebrafish, most somitic cells give rise to long muscle fibers that are anchored to intersegmental boundaries. Therefore, this boundary is analogous to the mammalian tendon in that it transduces muscle-generated force to the skeletal system. We have investigated interactions between somite boundaries and muscle fibers. We define three stages of segment boundary formation. The first stage is the formation of the initial epithelial somite boundary. The second "transition" stage involves both the elongation of initially round muscle precursor cells and somite boundary maturation. The third stage is myotome boundary formation, where the boundary becomes rich in extracellular matrix and all muscle precursor cells have elongated to form long muscle fibers. It is known that formation of the initial epithelial somite boundary requires Notch signaling; vertebrate Notch pathway mutants show severe defects in somitogenesis. However, many zebrafish Notch pathway mutants are homozygous viable suggesting that segmentation of their larval and adult body plans at least partially recovers. We show that epithelial somite boundary formation and slow-twitch muscle morphogenesis are initially disrupted in after eight (aei) mutant embryos (which lack function of the Notch ligand, DeltaD); however, myotome boundaries form later ("recover") in a Hedgehog-dependent fashion. Inhibition of Hedgehog-induced slow muscle induction in aei/deltaD and deadly seven (des)/notch1a mutant embryos suggests that slow muscle is necessary for myotome boundary recovery in the absence of initial epithelial somite boundary formation. Because we have previously demonstrated that slow muscle migration triggers fast muscle cell elongation in zebrafish, we hypothesize that migrating slow muscle facilitates myotome boundary formation in aei/deltaD mutant embryos by patterning coordinated fast muscle cell elongation. In addition, we utilized genetic mosaic analysis to show that somite boundaries also function to limit the extent to which fast muscle cells can elongate. Combined, our results indicate that multiple interactions between somite boundaries and muscle fibers mediate zebrafish segmentation.  相似文献   

17.
18.
19.
20.
Evidence for a role of Smad6 in chick cardiac development.   总被引:4,自引:0,他引:4  
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-beta) superfamily, are obligatory growth factors for early embryogenesis and heart formation. SMAD proteins transduce signals of the TGF-beta superfamily. We isolated chicken Smad6 (cSmad6), a member of inhibitory SMADs, and found its expression to be remarkably restricted to the developing heart, eyes, and limbs. cSmad6 expression was detected in the cardiogenic region of stage 5 embryos and overlapped Nkx2-5 and bmp-2, -4, and -7 expression. Throughout development, cSmad6 was expressed strongly in the heart, primarily in the myocardium, endocardium, and endocardial cushion tissue. Myocardial expression of cSmad6 was stronger in the forming septum, where highly localized expression of bmp-2 and -4 was also observed. Ectopically applied BMP-2 protein induced the expression of cSmad6, a putative negative regulator of BMP-signaling pathway, in anterior medial mesoendoderm of stage 4-5 embryos. In addition, blocking of BMP signaling using Noggin downregulated cSmad6 in cardiogenic tissue. cSmad1, one of the positive mediators of BMP signaling, was also expressed in cardiogenic region, but was not BMP-2 inducible. Our data suggest that cSmad6 has a role in orchestrating BMP-mediated cardiac development. We propose the possible mechanism of action of cSmad6 as modulating BMP signal by keeping a balance between constitutively expressed pathway-specific cSmad1 and ligand-induced inhibitory cSmad6 in the developing heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号