首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A peptide model of insulin folding intermediate with one disulfide   总被引:4,自引:0,他引:4       下载免费PDF全文
Insulin folds into a unique three-dimensional structure stabilized by three disulfide bonds. Our previous work suggested that during in vitro refolding of a recombinant single-chain insulin (PIP) there exists a critical folding intermediate containing the single disulfide A20-B19. However, the intermediate cannot be trapped during refolding because once this disulfide is formed, the remaining folding process is very quick. To circumvent this difficulty, a model peptide ([A20-B19]PIP) containing the single disulfide A20-B19 was prepared by protein engineering. The model peptide can be secreted from transformed yeast cells, but its secretion yield decreases 2-3 magnitudes compared with that of the wild-type PIP. The physicochemical property analysis suggested that the model peptide adopts a partially folded conformation. In vitro, the fully reduced model peptide can quickly and efficiently form the disulfide A20-B19, which suggested that formation of the disulfide A20-B19 is kinetically preferred. In redox buffer, the model peptide is reduced gradually as the reduction potential is increased, while the disulfides of the wild-type PIP are reduced in a cooperative manner. By analysis of the model peptide, it is possible to deduce the properties of the critical folding intermediate with the single disulfide A20-B19.  相似文献   

2.
Qiao ZS  Guo ZY  Feng YM 《Biochemistry》2001,40(9):2662-2668
Although the structure of insulin has been well studied, the formation pathway of the three disulfide bridges during the refolding of insulin precursor is ambiguous. Here, we reported the in vitro disulfide-forming pathway of a recombinant porcine insulin precursor (PIP). In redox buffer containing L-arginine, the yield of native PIP from fully reduced/denatured PIP can reach 85%. The refolding process was quenched at different time points, and three distinct intermediates, including one with one disulfide linkage and two with two disulfide bridges, have been captured and characterized. An intra-A disulfide bridge was found in the former but not in the latter. The two intermediates with two disulfide bridges contain the common A20-B19 disulfide linkage and another inter-AB one. Based on the time-dependent formation and distribution of disulfide pairs in the trapped intermediates, two different forming pathways of disulfide bonds in the refolding process of PIP in vitro have been proposed. The first one involves the rapid formation of the intra-A disulfide bond, followed by the slower formation of one of the inter-AB disulfide bonds and then the pairing of the remaining cysteines to complete the refolding of PIP. The second pathway begins first with the formation of the A20-B19 disulfide bridge, followed immediately by another inter-AB one, possibly nonnative. The nonnative two-disulfide intermediates may then slowly rearrange between CysA6, CysA7, CysA11, and CysB7, until the native disulfide bond A6-A11 or A7-B7 is formed to complete the refolding of PIP. The proposed refolding behavior of PIP is compared with that of IGF-I and discussed.  相似文献   

3.
Hua QX  Jia W  Frank BH  Phillips NF  Weiss MA 《Biochemistry》2002,41(50):14700-14715
Proinsulin contains six cysteines whose specific pairing (A6-A11, A7-B7, and A20-B19) is a defining feature of the insulin fold. Pairing information is contained within A and B domains as demonstrated by studies of insulin chain recombination. Two insulin isomers containing non-native disulfide bridges ([A7-A11,A6-B7,A20-B19] and [A6-A7,A11-B7,A20-B19]), previously prepared by directed chemical synthesis, are metastable and biologically active. Remarkably, the same two isomers are preferentially formed from native insulin or proinsulin following disulfide reassortment in guanidine hydrochloride. The absence of other disulfide isomers suggests that the observed species exhibit greater relative stability and/or kinetic accessibility. The structure of the first isomer ([A7-A11,A6-B7,A20-B19], insulin-swap) has been described [Hua, Q. X., Gozani, S. N., Chance, R. E., Hoffmann, J. A., Frank, B. H., and Weiss, M. A. (1995) Nat. Struct. Biol. 2, 129-138]. Here, we demonstrate that the second isomer (insulin-swap2) is less ordered than the first. Nativelike elements of structure are retained in the B chain, whereas the A chain is largely disordered. Thermodynamic studies of guanidine denaturation demonstrate the instability of the isomers relative to native insulin (DeltaDeltaG(u) > 3 kcal/mol). In contrast, insulin-like growth factor I (IGF-I) and the corresponding isomer IGF-swap, formed as alternative products of a bifurcating folding pathway, exhibit similar cooperative unfolding transitions. The insulin isomers are similar in structure and stability to two-disulfide analogues whose partial folds provide models of oxidative folding intermediates. Each exhibits a nativelike B chain and less-ordered A chain. This general asymmetry is consistent with a hierarchical disulfide pathway in which nascent structure in the B chain provides a template for folding of the A chain. Structures of metastable disulfide isomers provide probes of the topography of an energy landscape.  相似文献   

4.
Hua QX  Nakagawa SH  Jia W  Hu SQ  Chu YC  Katsoyannis PG  Weiss MA 《Biochemistry》2001,40(41):12299-12311
The landscape paradigm of protein folding can enable preferred pathways on a funnel-like energy surface. Hierarchical preferences may be manifest as a nonrandom pathway of disulfide pairing. Stepwise stabilization of structural subdomains among on-pathway intermediates is proposed to underlie the disulfide pathway of proinsulin and related molecules. Here, effects of pairwise serine substitution of insulin's exposed interchain disulfide bridge (Cys(A7)-Cys(B7)) are characterized as a model of a late intermediate. Untethering cystine A7-B7 in an engineered monomer causes significantly more marked decreases in the thermodynamic stability and extent of folding than occur on pairwise substitution of internal cystine A6-A11 [Weiss, M. A., Hua, Q. X., Jia, W., Chu, Y. C., Wang, R. Y., and Katsoyannis, P. G. (2000) Biochemistry 39, 15429-15440]. Although substantially disordered and without significant biological activity, the untethered analogue contains a molten subdomain comprising cystine A20-B19 and a native-like cluster of hydrophobic side chains. Remarkably, A and B chains make unequal contributions to this folded moiety; the B chain retains native-like supersecondary structure, whereas the A chain is largely disordered. These observations suggest that the B subdomain provides a template to guide folding of the A chain. Stepwise organization of insulin-like molecules supports a hierarchic view of protein folding.  相似文献   

5.
Insulin contains two inter-chain disulfide bonds between the A and B chains (A7-B7 and A20-B19), and one intra-chain linkage in the A chain (A6-A11). To investigate the role of each disulfide bond in the structure, function and stability of the molecule, three des mutants of human insulin, each lacking one of the three disulfide bonds, were prepared by enzymatic conversion of refolded mini-proinsulins. Structural and biological studies of the three des mutants revealed that all three disulfide bonds are essential for the receptor binding activity of insulin, whereas the different disulfide bonds make different contributions to the overall structure of insulin. Deletion of the A20-B19 disulfide bond had the most substantial influence on the structure as indicated by loss of ordered secondary structure, increased susceptibility to proteolysis, and markedly reduced compactness. Deletion of the A6-A11 disulfide bond caused the least perturbation to the structure. In addition, different refolding efficiencies between the three des mutants suggest that the disulfide bonds are formed sequentially in the order A20-B19, A7-B7 and A6-A11 in the folding pathway of proinsulin.  相似文献   

6.
Insulin is one of the most important hormonal regulators of metabolism. Since the diabetes patients increase dramatically, the chemical properties, biological and physiological effects of insulin had been extensively studied. In last decade the development of NMR technique allowed us to determine the solution structures of insulin and its variety mutants in various conditions, so that the knowledge of folding, binding and stability of insulin in solution have been largely increased. The solution structure of insulin monomers is essentially identical to those of insulin monomers within the dimer and bexamer as determined by X-ray diffraction. The studies of insulin mutants at the putative residues for receptor binding explored the possible conformational change and fitting between insulin and its receptor. The systematical studies of disulfide paring coupled insulin folding intermediates revealed that in spite of the conformational variety of the intermediates, one structural feature is always remained: a “native-like B chain super-secondary structure“, which consists of B9-B19 helix with adjoining B23-B26 segment folded back against the central segment of B chain, an internal cystine A20-B19 disulfide bridge and a short a-helix at C-terminal of A chain linked. The “super-secondary structure“ might be the “folding nucleus“ in insulin folding mechanism. Cystine A20-B19 is the most important one among three disulfides to stabilize the nascent polypeptide in early stage of the folding. The NMR structure of C. elegans insulin-like peptide resembles that of human insulin and the peptide interacts with human insulin receptor. Other members of insulin superfamily adopt the “insulin fold“ mostly. The structural study of insulin-insulin receptor complex, that of C elegans and other invertebrate insulin-like peptide, insulin fibril study and protein disulfide isomerase (PDI) assistant proinsulin folding study will be new topics in future to get insight into folding, binding, stability, evolution and fibrillation of insulin in detail.  相似文献   

7.
Both Insulin and insulin-like growth factor 1 are members of insulin superfamily. They share homologous primary and tertiary structure as well as weakly overlapping biological activity. However, their folding behavior is different: insulin and its recombinant precursor (PIP) fold into one unique tertiary structure, while IGF-1 folds into two disulfides isomers with similar thermodynamic stability. To elucidate the molecular mechanism of their different folding behavior, we prepared a singlechain hybrid of insulin and IGF-1, [B10Glu]Ins/IGF-1(C), and studied its folding behavior compared with that of PIP and IGF-1. We also separated a major non-native disulfides isomer of the hybrid and studied its refolding. The data showed that the C-domain of IGF-1 did not affect the folding thermodynamics of insulin, that is, the primary structure of the hybrid encoded only one thermodynamically stable disulfides linkage. However, the folding kinetics of insulin was affected by the C-domain of IGF-1.  相似文献   

8.
Both Insulin and insulin-like growth factor 1 are members of insulin superfamily. They share homologous primary and tertiary structure as well as weakly overlapping biological activity. However, their folding behavior is different: insulin and its recombinant precursor (PIP) fold into one unique tertiary structure, while IGF-1 folds into two disulfides isomers with similar thermody-namic stability. To elucidate the molecular mechanism of their different folding behavior, we prepared a single-chain hybrid of insulin and IGF-1, [B10Glu]lns/IGF-1(C), and studied its folding behavior compared with that of PIP and IGF-1. We also separated a major non-native disulfides iso-mer of the hybrid and studied its refolding. The data showed that the C-domain of IGF-1 did not affect the folding thermodynamics of insulin, that is, the primary structure of the hybrid encoded only one thermodynamically stable disulfides linkage. However, the folding kinetics of insulin was affected by the C-domain of IGF-1.  相似文献   

9.
We use the procedure established for 'disulfide stability analysis in redox system' to investigate the unfolding process of porcine insulin precursor (PIP). Six major unfolding intermediates have been captured, in which four contain two disulfides, two contain one disulfide. Based on the characterization and analysis of the intermediates an unfolding pathway has been proposed, by which the native PIP unfolded through in turn 2SS and 1SS intermediates into fully reduced form. Besides, the comparison of the intermediates captured in PIP unfolding process with those intermediates captured in its refolding process revealed that some intermediates captured during both unfolding/refolding processes of PIP have identical disulfide pairing pattern, from which we suggest that the unfolding/refolding processes of PIP share some common intermediates but flow in the opposite direction.  相似文献   

10.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient Ⅰ was formed from P3A through thiol/disulfide exchange reaction; then, transients Ⅱ and Ⅲ, each containing two native disulfides, were formed through the recognition and interaction of transient Ⅰ with P4B or P6B and the thiol group's oxidation reaction mainly using GSSG as oxidative reagent; finally, transients Ⅱ and Ⅲ, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

11.
Human insulin is a double-chain peptide that is synthesized in vivo as a single-chain human proinsulin (HPI). We have investigated the disulfide-forming pathway of a single-chain porcine insulin precursor (PIP). Here we further studied the folding pathway of HPI in vitro. While the oxidized refolding process of HPI was quenched, four obvious intermediates (namely P1, P2, P3, and P4, respectively) with three disulfide bridges were isolated and characterized. Contrary to the folding pathway of PIP, no intermediates with one- or two-disulfide bonds could be captured under different refolding conditions. CD analysis showed that P1, P2, and P3 retained partially structural conformations, whereas P4 contained little secondary structure. Based on the time-dependent distribution, disulfide pair analysis, and disulfide-reshuffling process of the intermediates, we have proposed that the folding pathway of HPI is significantly different from that of PIP. These differences reveal that the C-peptide not only facilitates the folding of HPI but also governs its kinetic folding pathway of HPI. Detailed analysis of the molecular folding process reveals that there are some similar folding mechanisms between PIP and HPI. These similarities imply that the initiation site for the folding of PIP/HPI may reside in the central alpha-helix of the B-chain. The formation of disulfide A20-B19 may guide the transfer of the folding information from the B-chain template to the unstructured A-chain. Furthermore, the implications of this in vitro refolding study on the in vivo folding process of HPI have been discussed.  相似文献   

12.
Amphioxus insulin-like peptide (AILP) belongs to the insulin superfamily and is proposed as the common ancestor of insulin and insulin-like growth factor 1. Herein, the studies on oxidative refolding and reductive unfolding of AILP are reported. During the refolding process, four major intermediates, P1, P2, P3, and P4, were captured, which were almost identical to those intermediates, U1, U2, U3, and U4, captured during the AILP unfolding process. P4 (U4) has the native disulfide A20-B19; P1 (U1), P2 (U2), and P3 (U3) have two disulfide bonds, which include A20-B19. Based on the analysis of the time course distribution and properties of the intermediates, we proposed that fully reduced AILP refolded through 1SS, 2SS, and 3SS intermediate stages to the native form; native AILP unfolded through 2SS and 1SS intermediate stages to the full reduced form. A schematic flow chart of major oxidative refolding and reductive unfolding pathways of AILP was proposed. Implication for the folding behavior of insulin family proteins was discussed. There may be seen three common folding features in the insulin superfamily: 1) A20-B19 disulfide is most important and formed during the initial stage of folding process; 2) the second disulfide is nonspecifically formed, which then rearranged to native disulfide; 3) in vitro refolding and unfolding pathways may share some common folding intermediates but flow in opposite directions. Furthermore, although swap AILP is a thermodynamically stable final product, a refolding study of swap AILP demonstrated that it is also a productive intermediate of native AILP during refolding.  相似文献   

13.
To investigate the role of the A20-B19 disulfide bond in the structure, activity and folding of proinsulin, a human proinsulin (HPI) mutant [A20, B19Ala]-HPI was prepared. This mutant, together with another proinsulin mutant previously constructed with an A19Tyr deletion, which can also be taken as shifted mutant of the A20-B19 disulfide bond, were studied for their in vitro refolding, oxidation of free thiol groups, circular dichroism spectra, antibody and receptor binding activities and sensitivity to trypsin digestion in comparison with native proinsulin. The results indicate that deletion of the A20-B19 disulfide bond results in a large decrease in the alpha-helix content of the molecule and higher sensitivity to tryptic digestion. Both the deletion and shift mutations, especially the latter, cause a great decrease in the biological activity of proinsulin analogues. The folding yields of HPI analogues were much lower than that of HPI. And the shift mutant, [Delta A19Tyr]-HPI, was scarcely refolded correctly in vitro and its refolding yield was extremely low. These results suggest that the A20-B19 disulfide bond plays an important role in the structural stabilization and folding of the insulin precursor. By summarizing the refolding studies on proinsulin, a possible folding pathway is proposed.  相似文献   

14.
Huang K  Maiti NC  Phillips NB  Carey PR  Weiss MA 《Biochemistry》2006,45(34):10278-10293
Systemic amyloidoses, an important class of protein misfolding diseases, are often due to fibrillation of disulfide-cross-linked globular proteins otherwise unrelated in sequence or structure. Although cross-beta assembly is regarded as a universal property of polypeptides, it is not understood how such amyloids accommodate diverse disulfide connectivities. Does amyloidogenicity depend on protein topology? A model is provided by insulin, a two-chain protein containing three disulfide bridges. The importance of chain topology is demonstrated by mini-proinsulin (MP), a single-chain analogue in which the C-terminus of the B chain (residue B30) is tethered to the N-terminus of the A chain (A1). The B30-A1 tether impedes the fiber-specific alpha --> beta transition, leading to slow formation of a structurally nonuniform amorphous precipitate. Conversely, fibrillation is robust to interchange of disulfide bridges. Whereas native insulin exhibits pairings [A6-A11, A7-B7, and A20-B19], metastable isomers with alternative pairings [A6-B7, A7-A11, A20-B19] or [A6-A7, A11-B7, A20-B1] readily undergo fibrillation with essentially identical alpha --> beta transitions. Respective pairing schemes are in each case retained. Isomeric fibrils and the amorphous MP precipitate are each able to seed the fibrillation of wild-type insulin, suggesting a structural correspondence between respective nuclei or modes of assembly. Together, our results demonstrate that effects of polypeptide topology on amyloidogenicity depend on structural context. Although the native structures and stabilities of single-chain insulin analogues are similar to those of wild-type insulin, the interchain tether constrains the extent of conformational distortion at elevated temperature, retards initial non-native aggregation, and is apparently incompatible with the mature structure of an insulin protofilament. We speculate that the general danger of fibrillation has imposed a constraint in protein evolution, selecting for topologies unfavorable to amyloid formation.  相似文献   

15.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates: two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient I was formed from P3A through thiol/disulfide exchange reaction; then, transients II and III, each containing two native disulfides, were formed through the recognition and interaction of transient I with P4B or P6B and the thiol group’s oxidation reaction mainly using GSSG as oxidative reagent; finally, transients II and III, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

16.
Chen Y  You Y  Jin R  Guo ZY  Feng YM 《Biochemistry》2004,43(28):9225-9233
Although insulin and insulin-like growth factor-1 (IGF-1) belong to one family, insulin folds into one thermodynamically stable structure, while IGF-1-folds into two thermodynamically stable structures (native and swap forms). We have demonstrated previously that the bifurcating folding behavior of IGF-1 is mainly controlled by its B-domain. To further elucidate which parts of the sequences determine their different folding behavior, by exchanging the N-terminal sequences of mini-IGF-1 and recombinant porcine insulin precursor (PIP), we prepared four peptide models: [1-9]PIP, [1-10]mini-IGF-1, [1-4]PIP, and [1-5]mini-IGF-1 by means of protein engineering, and their disulfide rearrangement, V8 digestion, circular dichroic spectra, disulfide stability, and in vitro refolding were investigated. Among them only [1-9]PIP, like mini-IGF-1/IGF-1, was expressed in yeast as two isomers: isomer 1 (corresponding to swap IGF-1) and isomer 2 (corresponding to native IGF-1), which are supported by the experimental results of disulfide rearrangements, peptide mapping of V8 endoprotenase digests, circular dichroic analysis, in vitro refolding, and disulfide stability analysis. The other peptide models, [1-10]mini-IGF-1, [1-4]PIP, and [1-5]mini-IGF-1, fold into one stable structure as PIP does, which indicates that sequence 1-4 of mini-IGF-1 is important for the folding behavior of mini-IGF-1/IGF-1 but not sufficient to lead to a bifurcating folding. The results demonstrated that the folding information, by which mini-IGF-1/IGF-1-folds into two thermodynamically structures, is encoded/written in its sequence 1-9, while sequences 1-10 of B chain in insulin/PIP play an important role in the guide of its unique disulfide pairing during the folding process.  相似文献   

17.
Guo ZY  Feng YM 《Biological chemistry》2001,382(3):443-448
Using site-directed mutagenesis we deleted the two inter-chain disulfide bonds of insulin, separately or both, by substitution of the cysteine residues with serine. Deletion of A20-B19 or both of the two inter-chain disulfide bonds resulted in the complete loss of secretion of the mutant single-chain porcine insulin precursor (PIP) from Saccharomyces cerevisiae cells. Removal of the A7-B7 disulfide bond resulted in a large reduction of secretion, but we could obtain the mutant for analysis of its biological and some physico-chemical properties. The A7-B7 disulfide bond deleted insulin mutant retained only 0.1% receptor-binding activity compared with porcine insulin, and its in vivo biological potency measured by mouse convulsion assay was also very low. We also studied some physico-chemical properties of the mutant using circular dichroism, native polyacrylamide gel electrophoresis and reversed-phase HPLC, which revealed some structural changes of the mutant peptides compared to native insulin. The present study shows that the two inter-chain disulfide bonds are important for efficient in vivo folding/secretion of PIP from yeast, especially the A20-B19 disulfide bond, and that the A7-B7 disulfide bond is crucial for maintaining the native conformation and biological activity of insulin.  相似文献   

18.
Two very different mechanisms of folding have been proposed from experimental studies of disulfide formation in reduced ribonuclease A. (1) A pathway in which the rate-limiting step separates fully folded protein from all other disulfide intermediates and occurs solely in three-disulfide intermediates. (2) A multiple pathway mechanism with different rate-limiting steps for each pathway. The various rate-limiting steps involve disulfide breakage, formation, and rearrangement in intermediates with one, two, three, and four protein disulfides. To distinguish between these two mechanisms, we have carried out further studies of both unfolding and refolding. Refolding of reduced ribonuclease A requires three-disulfide intermediates to accumulate; negligible refolding occurs when only the nearly random one- and two-disulfide intermediate species are populated. Therefore, no rate-limiting steps of the type postulated in mechanism (2) occur in intermediates with one and two protein disulfides. Unfolding and disulfide reduction is an all-or-none process; no disulfide intermediates accumulate to detectable levels or precede the rate-limiting step. Mechanism (2) requires that such intermediates precede the rate-limiting step and accumulate to substantial levels. The different proposals were shown not to result from the use of different solution conditions or disulfide reagents; the two sets of data are not inconsistent. Instead, the inappropriate mechanism (2) resulted from an incorrect kinetic analysis and misinterpretation of the kinetics of disulfide formation and breakage.  相似文献   

19.
We have investigated the in vitro refolding process of human proinsulin (HPI) and an artificial mini-C derivative of HPI (porcine insulin precursor, PIP), and found that they have significantly different disulfide-formation pathways. HPI and PIP differ in their amino acid sequences due to the presence of the C-peptide linker found in HPI, therefore suggesting that the C-peptide linker may be responsible for the observed difference in folding behaviour. However, the manner in which the C-peptide contributes to this difference is still unknown. We have used both the disulfide scrambling method and a redox-equilibrium assay to assess the stability of the disulfide bridges. The results show that disulfide reshuffling is easier to induce in HPI than in PIP by the addition of thiol reagent. Thus, the C-peptide may affect the unique folding pathway of HPI by allowing the disulfide bonds of HPI to be easily accessible. The detailed processes of HPI unfolding by reduction of its disulfide bonds and by disulfide scrambling methods were also investigated. In the reductive unfolding process no accumulation of intermediates was detected. In the process of unfolding by disulfide scrambling, HPI gradually rearranged its disulfide bonds to form three major isomers G1, G2 and G3. The most abundant isomer, G1, contains the B7-B19 disulfide bridge. Based on far-UV CD spectra, native gel analysis and cleavage by endoproteinase V8, the G1 isomer has been shown to resemble the intermediate P4 found in the refolding process of HPI. Finally, the major isomer G1 is allowed to refold to native protein HPI by disulfide rearrangement, which indicates that a similar molecular mechanism may exist for the unfolding and refolding process of HPI.  相似文献   

20.
Recent studies of the refolding of reduced bovine pancreatic trypsin inhibitor (BPTI) have shown that a previously unidentified intermediate with a single disulfide is formed much more rapidly than any other one-disulfide species. This intermediate contains a disulfide that is present in the native protein (between Cys14 and 38), but it is thermodynamically less stable than the other two intermediates with single native disulfides. To characterize the role of the [14-38] intermediate and the factors that favor its formation, detailed kinetic and mutational analyses of the early disulfide-formation steps were carried out. The results of these studies indicate that the formation of [14-38] from the fully reduced protein is favored by both local electrostatic effects, which enhance the reactivities of the Cys14 and 38 thiols, and conformational tendencies that are diminished by the addition of urea and are enhanced at lower temperatures. At 25 degrees C and pH 7.3, approximately 35% of the reduced molecules were found to initially form the 14-38 disulfide, but the majority of these molecules then undergo intramolecular rearrangements to generate non-native disulfides, and subsequently the more stable intermediates with native disulfides. Amino acid replacements, other than those involving Cys residues, were generally found to have only small effects on either the rate of forming [14-38] or its thermodynamic stability, even though many of the same substitutions greatly destabilized the native protein and other disulfide-bonded intermediates. In addition, those replacements that did decrease the steady-state concentration of [14-38] did not adversely affect further folding and disulfide formation. These results suggest that the weak and transient interactions that are often detected in unfolded proteins and early folding intermediates may, in some cases, not persist or promote subsequent folding steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号