首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vitro refolding/unfolding pathways of amphioxus insulin-like peptide: implications for folding behavior of insulin family proteins
Authors:Chen Yan  Jin Rui  Dong Hong-Yun  Feng You-Min
Institution:Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
Abstract:Amphioxus insulin-like peptide (AILP) belongs to the insulin superfamily and is proposed as the common ancestor of insulin and insulin-like growth factor 1. Herein, the studies on oxidative refolding and reductive unfolding of AILP are reported. During the refolding process, four major intermediates, P1, P2, P3, and P4, were captured, which were almost identical to those intermediates, U1, U2, U3, and U4, captured during the AILP unfolding process. P4 (U4) has the native disulfide A20-B19; P1 (U1), P2 (U2), and P3 (U3) have two disulfide bonds, which include A20-B19. Based on the analysis of the time course distribution and properties of the intermediates, we proposed that fully reduced AILP refolded through 1SS, 2SS, and 3SS intermediate stages to the native form; native AILP unfolded through 2SS and 1SS intermediate stages to the full reduced form. A schematic flow chart of major oxidative refolding and reductive unfolding pathways of AILP was proposed. Implication for the folding behavior of insulin family proteins was discussed. There may be seen three common folding features in the insulin superfamily: 1) A20-B19 disulfide is most important and formed during the initial stage of folding process; 2) the second disulfide is nonspecifically formed, which then rearranged to native disulfide; 3) in vitro refolding and unfolding pathways may share some common folding intermediates but flow in opposite directions. Furthermore, although swap AILP is a thermodynamically stable final product, a refolding study of swap AILP demonstrated that it is also a productive intermediate of native AILP during refolding.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号