首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zeng T  Li D  Zhang J 《Current microbiology》2011,63(6):543-550
A lab-scale partial nitrifying sequencing batch biofilm reactor was a successful start-up. Denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial community dynamics in three periods together with inocula sludge at ambient temperature. The DGGE profiles of bacteria and Shannon–Wiener index (H′) results showed that high free ammonia (FA) concentration referred to lower diversity in the bioreactor system. Cluster analysis indicated that microorganism in period III was similar with inocula sludge and was different from that in periods I and II. Similar results also appeared in ammonia-oxidizing bacteria (AOB) community structure and nitrite-oxidizing bacteria (NOB) community structure, and at least four AOB species and two NOB species were present in period III, respectively. Phylogenetic analysis of amoA gene sequences showed that Nitrosomonas eutropha cluster was predominant in all the three periods. With lower ammonium loads, three new operational taxonomic units formed and consisted Nitrosomonas sp. Cluster. This article demonstrated that microbial community, AOB, and NOB diversity were related with FA concentration closely at ambient temperature.  相似文献   

2.
The bacterial community in a partial nitrification reactor was analyzed on the basis of 16S rRNA gene by cloning–sequencing method, and the percentages of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the activated sludge were quantified by three independent methods, namely, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP) and Double Monod modeling. The clone library results suggested that there were only a dominant AOB and a dominant NOB species in the reactor, belonging to Nitrosomonas genus and Nitrospira genus, respectively. The percentages of NOB in total bacterial community increased from almost 0% to 30% when dissolved oxygen (DO) levels were changed from 0.15 mg/L to 0.5 mg/L, coinciding with the accumulation and conversion of nitrite, while the percentages of AOB changed little in the two phases. The results confirmed the importance of low DO level for inhibiting NOB to achieve partial nitrification. Furthermore, the percentages of AOB and NOB in the total bacteria community were estimated based on the results of batch experiments using Double Monod model, and the results were comparable with those determined according to profiles of DGGE and T-RFLP.  相似文献   

3.
A quantitative real-time PCR (QPCR) assay with the TaqMan system was used to quantify 16S rRNA genes of β-proteobacterial ammonia-oxidizing bacteria (AOB) in a batch nitrification bioreactor. Five different sets of primers, together with a TaqMan probe, were used to quantify the 16S rRNA genes of β-proteobacterial AOB belonging to the Nitrosomonas europaea, Nitrosococcus mobilis, Nitrosomonas nitrosa, and Nitrosomonas cryotolerans clusters, and the genus Nitrosospira. We also used PCR followed by denaturing gradient gel electrophoresis (DGGE), cloning, and sequencing of their 16S rRNA genes to identify the AOB species. Seed sludge from an industrial wastewater treatment process controlling high-strength nitrogen wastewater (500 mg/L NH4 +–N) was used as the inoculum for subsequent batch experiment. The Nitrosomonas nitrosa cluster was the predominant AOB (2.3 × 105 copies/mL) in the start-up period of the batch experiment. However, from the exponential growth period, the Nitrosomonas europaea cluster was the most abundant AOB, and its 16S rRNA gene copy number increased to 8.9 × 106 copies/mL. The competitive dominance between the two AOB clusters is consistent with observed differences in ammonia tolerance and substrate affinity. Analysis of the DGGE results indicated the presence of Nitrosomonas europaea ATCC19718 and Nitrosomonas nitrosa Nm90, consistent with the QPCR results.  相似文献   

4.
Autotrophic growth of nitrifying community in an agricultural soil   总被引:8,自引:0,他引:8  
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.  相似文献   

5.
The effects of growth type, including attached growth, suspended growth, and combined growth, on the characteristics of communities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were studied in three lab-scale Anaerobic/Anoxicm-Oxicn (AmOn) systems. These systems amplified activated sludge, biofilms, and a mixture of activated sludge and biofilm (AS-BF). Identical inocula were adopted to analyze the selective effects of mixed growth patterns on nitrifying bacteria. Fluctuations in the concentration of nitrifying bacteria over the 120 days of system operation were analyzed, as was the composition of nitrifying bacterial community in the stabilized stage. Analysis was conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. According to the DGGE patterns, the primary AOB lineages were Nitrosomonas europaea (six sequences), Nitrosomonas oligotropha (two sequences), and Nitrosospira (one sequence). The primary subclass of NOB community was Nitrospira, in which all identified sequences belonged to Nitrospira moscoviensis (14 sequences). Nitrobacter consisted of two lineages, namely Nitrobacter vulgaris (three sequences) and Nitrobacter alkalicus (two sequences). Under identical operating conditions, the composition of nitrifying bacterial communities in the AS-BF system demonstrated significant differences from those in the activated sludge system and those in the biofilm system. Major varieties included several new, dominant bacterial sequences in the AS-BF system, such as N. europaea and Nitrosospira and a higher concentration of AOB relative to the activated sludge system. However, no similar differences were discovered for the concentration of the NOB population. A kinetic study of nitrification demonstrated a higher maximum specific growth rate of mixed sludge and a lower half-saturation constant of mixed biofilm, indicating that the AS-BF system maintained relatively good nitrifying ability.  相似文献   

6.
Aims:  The bacterial diversity in a sequencing batch biofilm reactor (SBBR) treating landfill leachate was studied to explain the mechanism of nitrogen removal.
Methods and Results:  The total microbial DNA was extracted from samples collected from landfill leachate and biofilm of the reactor with the removal efficiencies of NH4+-N higher than 97% and that of chemical oxygen demand (determined by K2Cr2O7, CODCr) higher than 86%. Denaturing gradient gel electrophoresis (DGGE) fingerprints based on total community 16S rRNA genes were analyzed with statistical methods, and excised DNA bands were sequenced. The results of phylogenetic analyses revealed high diversity within the SBBR biofilm community, and DGGE banding patterns showed that the community structure in the biofilm remained stable during the running period.
Conclusions:  A coexistence of nitrifiers, including ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, denitrifiers, including aerobic or anaerobic denitrifying bacteria and Anammox bacteria were detected, which might be the real matter of high removal efficiencies of NH4+-N and CODCr in the reactor.
Significance and Impact of the Study:  The findings in this study indicated that PCR-DGGE analysis could be used for microbial community detection as prior method, and the SBBR technique could provide preferable growing environment for bacteria with N removal function.  相似文献   

7.
This study examined the hypothesis that different inorganic carbon (IC) conditions enrich different ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) populations by operating two laboratory-scale continuous-flow bioreactors fed with 15 and 100 mg IC/L, respectively. During this study, both bioreactors maintained satisfactory nitrification performance and stably oxidized 250 mg?N/L of influent ammonium without nitrite accumulation. Based on results of cloning/sequencing and terminal restriction fragment length polymorphism targeting on the ammonia monooxygenase subunit A (amoA) gene, Nitrosomonas nitrosa lineage was identified as the dominant AOB population in the high-IC bioreactor, while Nitrosomonas europaea and Nitrosomonas nitrosa lineage AOB were dominant in the low-IC bioreactor. Results of real-time polymerase chain reactions for Nitrobacter and Nitrospira 16S rRNA genes indicated that Nitrospira was the predominant NOB population in the high-IC bioreactor, while Nitrobacter was the dominant NOB in the low-IC bioreactor. Furthermore, batch experiment results suggest that N. europaea and Nitrobacter populations are proliferated in the low-IC bioreactor due to their higher rates under low IC conditions despite the fact that these two populations have been identified as weak competitors, compared with N. nitrosa and Nitrospira, under low ammonium/nitrite environments. This study revealed that in addition to ammonium/nitrite concentrations, limited IC conditions may also be important in selecting dominant AOB/NOB communities of nitrifying bioreactors.  相似文献   

8.
《Process Biochemistry》2010,45(9):1543-1549
In this study laboratory scale biological activated carbon (BAC) columns were operated with water taken from a surface water reservoir in Istanbul. The aim was to evaluate the efficiency of nitrification in columns packed with two different granular activated carbon grades (open superstructure/chemically activated and closed superstructure/steam activated carbon) and to examine the probable beneficial effect of pre-ozonation. The occurrence and diversity of ammonia-oxidizing bacteria were investigated using 16S rDNA and amoA gene based molecular techniques. Nearly complete removal of NH4+-N was achieved by nitrification in both carbon types. The nitrification efficiency did not change in columns fed with ozonated water. However, the type of feed (either raw or ozonated) played a more important role than the type of GAC with respect to the dominance of nitrifier species in BAC columns. In biofilters ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were most closely related to Nitrosomonas spp. and Nitrospira spp. as determined by cloning and slot-blot analysis, respectively. The fraction of the AOB population in the biomass was high as detected by real-time PCR. The amoA/16S rDNA ratio varied from 28.7% to 2.1% along the depth of filters. In spite of similar removal efficiencies, BAC columns fed with ozonated water harbored different types of AOB than columns that were receiving raw water.  相似文献   

9.
A compact suspended carrier biofilm reactor (SCBR) was developed for simultaneous nitrification and denitrification (SND) in a single reactor and the performance of nutrient removal was investigated. Microbial community structure response to different ratio of carbon to nitrogen (C/N) was determined by denaturing gel gradient electrophoresis (DGGE) profiles of 16S rDNA V3 region and amoA gene amplifications. In addition, the population dynamics of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were estimated by fluorescence in situ hybridization (FISH) with 16S rDNA-targeted oligonucleotide probes. Results showed that the compact SCBR was efficient in nutrient removal with CODCr removal efficiency over 90% and SND efficiency (ESND) about 83.3%. The diversity of microbial community structure was positively correlated with C/N ratio, while the three communities of amoA gene were relativity homogenous. The population of nitrifiers was in inverse proportions to C/N ratio with the average fraction of AOB and NOB to all bacteria 5.4, 4.8, 3.1% and 4.6, 3.5, 2.7% respectively as C/N ratio changing from 3:1, 5:1 to 10:1. Therefore we could reach a conclusion that the compact SCBR was practical to treat municipal wastewater and the shift of microbial community monitored by molecular technologies could offer guidance to the process optimization in engineering.  相似文献   

10.
Biological removal of ammonia was investigated using compost and sludge as packing materials in laboratory-scale biofilters. The aim of this study is to characterize the composition of ammonia-oxidizing bacteria (AOB) in two biofilters designed to remove ammonia. Experimental tests and measurements included analysis of removal efficiency and metabolic products. The inlet concentration of ammonia applied was 20–100 mg m−3. Removal efficiencies of BFC and BFS were in the range of 97–99% and 95–99%, respectively. Periodic analysis of the biofilter packing materials showed ammonia was removed from air stream by nitrification and by the improved absorption of NH3 in the resultant acidity. Nitrate was the dominant product of NH3 transformation. Changes in the composition of AOB were examined by using nested PCR, denaturing gradient gel electrophoresis (DGGE) and sequencing of DGGE bands. DGGE analysis of biofilter samples revealed that shifts in the community structure of AOB were observed in the experiment; however, the idle phase did not cause the structural shift of AOB. Phylogenetic analysis revealed the population of AOB showed Nitrosospira sp. remains the predominant population in BFC, while Nitrosomonas sp. is the predominant population in BFS.  相似文献   

11.
王智慧  蒋先军 《微生物学报》2021,61(7):1933-1944
【目的】揭示典型农田旱地紫色土硝化微生物的群落组成及其对pH的响应规律。【方法】针对同一母质发育但pH差异显著的3种紫色土,利用宏基因组技术深度测序研究土壤中硝化微生物丰度和群落,包括氨氧化古菌(ammonia-oxidizing archaea,AOA),氨氧化细菌(ammonia-oxidizing bacteria,AOB),亚硝酸盐氧化细菌(nitrite-oxidizingbacteria,NOB)和全程氨氧化细菌(completeammoniaoxidizer,Comammox)。【结果】土壤中硝化微生物的丰度占总微生物的2.130%–6.082%。3种紫色土中AOA、AOB和NOB的相对丰度有显著差异:酸性紫色土中AOA的相对丰度显著大于碱性紫色土,而AOB则相反;NOB的相对丰度在中性紫色土中最高。所有土样中均发现了1种全程氨氧化细菌Candidatus Nitrospira inopinata (Ca. N. inopinata),其在中性紫色土中相对丰度最高,占总微生物的0.203%。3种不同pH紫色土中AOA均以Nitrososphaera为主,NOB均以Nitrospira为主;酸性紫色土中AOB以Nitroscoccus为主,而中性和石灰性紫色土中则以Nitrosospira为主。Pearson相关性分析发现,土壤pH和铵态氮是影响硝化微生物丰度最大的两个因子。【结论】Comammox存在于3种不同pH紫色土中,且偏好中性环境;AOA、AOB和NOB群落结构和相对丰度都存在显著差异,结合相关性分析发现土壤pH和铵态氮是导致差异最重要的两个因子。  相似文献   

12.
Previous studies have shown that membrane-aerated biofilm (MAB) reactors can simultaneously remove carbonaceous and nitrogenous pollutants from wastewater in a single reactor. Oxygen is provided to MABs through gas-permeable membranes such that the region nearest the membrane is rich in oxygen but low in organic carbon, whereas the outer region of the biofilm is void of oxygen but rich in organic carbon. In this study, MABs were grown under similar conditions but at two different fluid velocities (2 and 14 cm s−1) across the biofilm. MABs were analyzed for changes in biomass density, respiratory activity, and bacterial community structure as functions of biofilm depth. Biomass density was generally highest near the membrane and declined with distance from the membrane. Respiratory activity exhibited a hump-shaped profile, with the highest activity occurring in the middle of the biofilm. Community analysis by PCR cloning and PCR-denaturing gradient gel electrophoresis of 16S rRNA genes demonstrated substantial stratification of the community structure across the biofilm. Population profiles were also generated by competitive quantitative PCR of gene fragments specific for ammonia-oxidizing bacteria (AOB) (amoA) and denitrifying bacteria (nirK and nirS). At a flow velocity of 14 cm s−1, AOB were found only near the membrane, whereas denitrifying bacteria proliferated in the anoxic outer regions of the biofilm. In contrast, at a flow velocity of 2 cm s−1, AOB were either not detected or detected at a concentration near the detection limit. This study suggests that, under the appropriate conditions, both AOB and denitrifying bacteria can coexist within an MAB.  相似文献   

13.
Population dynamics of ammonia-oxidizing bacteria (AOB) and uncultured Nitrospira-like nitrite-oxidizing bacteria (NOB) dominated in autotrophic nitrifying biofilms were determined by using real-time quantitative polymerase chain reaction (RTQ-PCR) and fluorescence in situ hybridization (FISH). Although two quantitative techniques gave the comparable results, the RTQ-PCR assay was easier and faster than the FISH technique for quantification of both nitrifying bacteria in dense microcolony-forming nitrifying biofilms. Using this RTQ-PCR assay, we could successfully determine the maximum specific growth rate (mu = 0.021/h) of uncultured Nitrospira-like NOB in the suspended enrichment culture. The population dynamics of nitrifying bacteria in the biofilm revealed that once they formed the biofilm, the both nitrifying bacteria grew slower than in planktonic cultures. We also calculated the spatial distributions of average specific growth rates of both nitrifying bacteria in the biofilm based on the concentration profiles of NH4+, NO2-, and O2, which were determined by microelectrodes, and the double-Monod model. This simple model estimation could explain the stratified spatial distribution of AOB and Nitrospira-like NOB in the biofilm. The combination of culture-independent molecular techniques and microelectrode measurements is a very powerful approach to analyze the in situ kinetics and ecophysiology of nitrifying bacteria including uncultured Nitrospira-like NOB in complex biofilm communities.  相似文献   

14.
In this study, a lab-scale partial nitrifying sequencing batch reactor (SBR) was developed to investigate partial nitrification at ambient temperature (16–22 °C). Techniques of denaturing gradient gel electrophoresis (DGGE), cloning, and fluorescence in situ hybridization (FISH) were utilized simultaneously to study microbial population dynamics. Partial nitrification was effectively achieved in response to shifts of influent ammonium concentrations. DGGE results showed that higher ammonia concentration referred to lower ammonia-oxidizing bacteria (AOB) diversity in the SBR. Phylogenetic analysis revealed that all the predominant AOB was affiliated with Nitrosomonas genus. FISH analysis illustrated AOB was the predominant nitrifying bacteria of microbial compositions when SBR achieved partial nitrification (PN) at ambient temperature.  相似文献   

15.
The abundance and diversity of amoA genes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in ten wastewater treatment systems (WTSs) by polymerase chain reaction (PCR), cloning, sequencing, and quantitative real-time PCR (qPCR). The ten WTSs included four full-scale municipal WTSs, three full-scale industrial WTSs, and three lab-scale WTSs. AOB were present in all the WTSs, whereas AOA were detected in nine WTSs. QPCR data showed that AOB amoA genes (4.625?×?104–9.99?×?109 copies g?1 sludge) outnumbered AOA amoA genes (<limit of detection–1.90?×?107 copies g?1 sludge) in each WTS, indicating that AOB may play an important role than AOA in ammonia oxidization in WTSs. Interestingly, it was found that AOA and AOB coexisted with anaerobic ammonia oxidation (anammox) bacteria in three anammox WTSs with relatively higher abundance. In a full-scale industrial WTS where effluent ammonia was higher than influent ammonia, both AOA and AOB showed higher abundance. The phylogenetic analysis of AOB amoA genes showed that genera Nitrosomonas was the most dominant species in the ten WTSs; Nitrosomonas europaea cluster was the dominant major cluster, followed by Nitrosomonas-like cluster and Nitrosomonas oligotropha cluster; and AOB species showed higher diversity than AOA species. AOA were found to be affiliated with two major clusters: Nitrososphaera cluster and Nitrosopumilus cluster. Nitrososphaera cluster was the most dominant species in different samples and distributed worldwide.  相似文献   

16.
Cryosectioned biofilm from three depths (0.5, 3.0 and 6.0 m) in a full-scale nitrifying trickling filter (NTF) were studied using fluorescence in situ hybridization (FISH). A large number of sections were used to determine how the biofilm thickness, structure and community composition varied with depth along the ammonium concentration gradient in the NTF, and how the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were distributed vertically within the biofilm. Both the biofilm thickness and relative biomass content of the biofilm decreased with depth, along with structural differences such as void size and surface roughness. Four AOB populations were found, with two Nitrosomonas oligotropha populations dominating at all depths. A smaller population of Nitrosomonas europaea was present only at 0.5 m, while a population of Nitrosomonas communis increased with depth. The two N. oligotropha populations showed different vertical distribution patterns within the biofilm, indicating different ecophysiologies even though they belong to the same AOB lineage. All NOB were identified as Nitrospira sp., and were generally more associated with the biofilm base than the surface-associated dominating AOB population. Additionally, a small population of anaerobic ammonia-oxidizers was found at 6.0 m, even though the biofilm was well aerated.  相似文献   

17.
Community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the albic soil grown with soybean and rice for different years was investigated by construction of clone libraries, denaturing gradient gel electrophoresis (DGGE), and quantitative polymerase chain reaction (q-PCR) by PCR amplification of the ammonia monooxygenase subunit A (amoA) gene. Soil samples were collected at two layers (0–5 and 20–25 cm) from a soybean field and four rice paddy fields with 1, 5, 9, and 17 years of continuous rice cultivation. Both the community structures and abundances of AOA and AOB showed detectable changes after conversion from soybean to rice paddy judged by clone library, DGGE, and q-PCR analyses. In general, the archaeal amoA gene abundance increased after conversion to rice cultivation, while bacterial amoA gene abundance decreased. The abundances of both AOA and AOB were higher in the surface layer than the bottom one in the soybean field, but a reverse trend was observed for AOB in all paddy samples regardless of the duration of paddy cultivation. Phylogenetic analysis identified nine subclusters of AOA and seven subclusters of AOB. Community composition of both AOA and AOB was correlated with available ammonium and increased pH value caused by flooding in multiple variance analysis. Community shift of AOB was also observed in different paddy fields, but the two layers did not show any detectable changes in DGGE analysis. Conversion from soybean to rice cultivation changed the community structure and abundance of AOA and AOB in albic agricultural soil, which requires that necessary cultivation practice be followed to manage the N utilization more effectively.  相似文献   

18.
Influences of infaunal burrows constructed by the polychaete (Tylorrhynchus heterochaetus) on O2 concentrations and community structures and abundances of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in intertidal sediments were analyzed by the combined use of a 16S rRNA gene-based molecular approach and microelectrodes. The microelectrode measurements performed in an experimental system developed in an aquarium showed direct evidence of O2 transport down to a depth of 350 mm of the sediment through a burrow. The 16S rRNA gene-cloning analysis revealed that the betaproteobacterial AOB communities in the sediment surface and the burrow walls were dominated by Nitrosomonas sp. strain Nm143-like sequences, and most of the clones in Nitrospira-like NOB clone libraries of the sediment surface and the burrow walls were related to the Nitrospira marina lineage. Furthermore, we investigated vertical distributions of AOB and NOB in the infaunal burrow walls and the bulk sediments by real-time quantitative PCR (Q-PCR) assay. The AOB and Nitrospira-like NOB-specific 16S rRNA gene copy numbers in the burrow walls were comparable with those in the sediment surfaces. These numbers in the burrow wall at a depth of 50 to 55 mm from the surface were, however, higher than those in the bulk sediment at the same depth. The microelectrode measurements showed higher NH4+ consumption activity at the burrow wall than those at the surrounding sediment. This result was consistent with the results of microcosm experiments showing that the consumption rates of NH4+ and total inorganic nitrogen increased with increasing infaunal density in the sediment. These results clearly demonstrated that the infaunal burrows stimulated O2 transport into the sediment in which otherwise reducing conditions prevailed, resulting in development of high NH4+ consumption capacity. Consequently, the infaunal burrow became an important site for NH4+ consumption in the intertidal sediment.  相似文献   

19.
In this study, anammox bacteria were rapidly enriched in sequencing batch biofilm reactors (SBBRs) with different inoculations. The activated sludge taken from a sequencing batch reactor was used and inoculated to SBBR1, while SBBR2 was seeded with stored anaerobic sludge from an upflow anaerobic fixed bed (2-year stored at 5–15 °C). Nitrogen removal performance, anammox activity, biofilm characteristics and variation of the microbial community were evaluated. The maximum total nitrogen loading rate (NLR) of SBBR1 gradually reached to 1.62 kg?N/(m3/day) with a removal efficiency higher than 88 % and the NLR of SBBR2 reached to 1.43 kg?N/(m3/day) with a removal efficiency of 86 %. SBBR2 was more stable compared to SBBR1. These results, combined with molecular techniques such as scanning electron microscope, fluorescence in situ hybridization, and terminal restriction fragment length polymorphism, indicated that different genera of anammox bacteria became dominant. This research also demonstrates that SBBR is a promising bioreactor for starting up and enriching anammox bacteria.  相似文献   

20.

Aim

To provide deeper insights into nitrification process within aerobic bioreactors containing supplemental physical support media (hybrid bioreactors).

Methods and Results

Three bench‐scale hybrid bioreactors with different media size and one control bioreactor were operated to assess how biofilm integrity influences microbial community conditions and bioreactor performance. The systems were operated initially at a 5‐day hydraulic retention time (HRT), and all reactors displayed efficient nitrification and chemical oxygen demand (COD) removal (>95%). However, when HRT was reduced to 2·5 days, COD removal rates remained high, but nitrification efficiencies declined in all reactors after 19 days. To explain reduced performance, nitrifying bacterial communities (ammonia‐oxidizing bacteria, AOB; nitrite‐oxidizing bacteria, NOB) were examined in the liquid phase and also on the beads using qPCR, FISH and DGGE. Overall, the presence of the beads in a reactor promoted bacterial abundances and diversity, but as bead size was increased, biofilms with active coupled AOB–NOB activity were less apparent, resulting in incomplete nitrification.

Conclusions

Hybrid bioreactors have potential to sustain effective nitrification at low HRTs, but support media size and configuration type must be optimized to ensure coupled AOB and NOB activity in nitrification.

Significance and Impact of the Study

This study shows that AOB and NOB coupling must be accomplished to minimize nitrification failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号