首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本研究旨在通过检测创伤后应激障碍(post-traumatic stress disorder, PTSD)小鼠背侧海马(dorsal hippocampus, dHPC)及腹侧海马(ventral hippocampus, vHPC)神经元电生理特性的改变,探讨海马神经元的可塑性与PTSD后记忆之间的关系。随机将C57Thy1-YFP/GAD67-GFP品系雄性小鼠分为对照组和PTSD组,通过对小鼠施加不可逃避足底电击(foot shock, FS)建立PTSD模型,利用Morris水迷宫探查小鼠空间学习记忆的变化,在全细胞记录模式下检测dHPC和vHPC谷氨酸能神经元和GABA能神经元电生理特性的变化。结果显示:FS可显著降低小鼠平均移动速度、提高僵立次数和僵立百分比;PTSD可显著延长定位逃避训练中的定位逃避期,缩短定位探查训练中在原象限内游泳停留时间,延长在对侧象限内游泳停留时间;FS同时提高dHPC谷氨酸能神经元和vHPC GABA能神经元能障、绝对不应期和动作电位间距,降低dHPC GABA能神经元和vHPC谷氨酸能神经元能障、绝对不应期和动作电位间距。以上结果表明:PTS...  相似文献   

2.
目的:测量和比较感觉运动皮层Ⅱ/Ⅲ层锥体神经元和中间神经元的内在特性并研究其与动作电位编码频率和精确性的关系。方法:采用全细胞电流钳记录模式,获得的数据输入pClamp和Origin进行处理分析。结果:与锥体神经元相比,中间神经元群集动作电位具有较低的阈电位水平和较短的不应期,从而中间神经元具有较高的动作电位编码频率和精确性。结论:皮层神经元动作电位的阈电位水平和不应期调控动作电位的编码频率和精确性。  相似文献   

3.
糖皮质激素引起哺乳类神经元超极化反应的离子机制   总被引:1,自引:0,他引:1  
汪文  邢宝仁  陈宜张 《生理学报》1997,49(5):537-544
在豚鼠腹腔神经节上对383个神经元作细胞内记录,给予1μmol/L半琥珀酸皮质醇灌流,38个神经元膜电位发生超极化反应,幅度变化为2~12mV(6.3±0.1mV),伴有膜电阻的降低,反应呈剂量效应关系。9个神经元呈去极化反应,其余336个神经元不反应。用单电极间断电压箝方法记录43个神经元在糖皮质激素作用下膜电流的变化,其中5个神经元出现外向电流,膜电导增加;1个神经元为内向电流。用低钙高镁液阻断突触传递和蛋白质合成抑制剂放线菌素D后,超极化反应仍然存在。皮质醇超极化反应的翻转电位为-79.0±4.3mV(n=5)。皮质醇超极化反应和GABA去极化反应可在同一神经元上出现,印防己毒素可拮抗GABA的去极化反应,但不能拮抗皮质醇的超极化反应。钾离子通道阻断剂四乙基铵(TEA)和4-氨基吡啶(4-AP)能拮抗皮质醇的超极化反应。我们推断皮质醇的超极化反应是细胞膜钾离子通道介导的。  相似文献   

4.
为探讨青年猫和老年猫小脑皮质GABA能神经元及其表达的年龄相关性变化,利用Nissl染色显示小脑皮质结构及神经元,免疫组织化学ABC法标记GABA免疫阳性神经元。光镜下观察,采集图像,并利用图像分析软件对分子层、蒲肯野细胞层和颗粒层神经元及GABA免疫阳性神经元及其灰度值进行分析统计。结果显示,GABA免疫阳性神经元、阳性纤维及终末在青年猫和老年猫小脑皮质各层均有分布。与青年猫相比,老年猫分子层、蒲肯野细胞层神经元和GABA免疫阳性神经元密度及其GABA免疫阳性反应强度均显著下降(P<0.01),颗粒层神经元密度和GABA免疫阳性强度也显著下降(P<0.01),但其GABA免疫阳性神经元密度无显著变化(P>0.05);蒲肯野细胞的胞体萎缩,阳性树突分枝减少。因此认为,衰老过程中猫小脑皮质GABA能神经元的丢失和GABA表达的下降,可能是老年个体运动协调、精确调速和运动学习等能力下降的重要原因之一。  相似文献   

5.
本研究观察了江浙蝮蛇抗栓酶(svate)对缺血心肌电生理学变化的影响。结果表明,静脉注射svate,使阻断冠脉后兔血小板聚集功能和心脏电生理各指标变化明显减轻。缺血50min时,血小板聚集率仅增加4±13%,静息电位减小15.8±0.1%,动作电位幅度降低17.8±0.1%,复极化50%和90%时程分别缩短12.3±0.1%及延长4±0.1%,不应期差值为4.2±7.8%,室颤阈(VFT)降低15.4±8.1%,与单纯阻断组各参数的百分率变化相比,p值均<0.01,证明svate具有改善有效不应期和提高VFT的作用。  相似文献   

6.
俞詠蓓 《生理学报》1989,41(6):536-542
本工作在正常离体小鼠(天龄10—15d)脊髓进行。实验结果表明:电刺激邻近记录电极的背根,微电泳GABA及GABA的协同剂Thip、Thiomuscimol和甘氨酸(Glycine)均能引起小鼠脊髓单一初级传入纤维终末的兴奋阈值下降,兴奋性增高,说明终末发生了去极化的变化。同时电泳荷包牡丹碱(Bicuculline)能逆转GABA及其协同剂的去极化作用,但对Glycine的去极化作用无效。而士的宁(Strychnine)能逆转Glycine的去极化作用,对GABA的去极化作用无效。说明在小鼠脊髓初级传入终末存在GABA_A受体及Glycine受体,而且在传入终末区Glycine受体类型可能与脊髓内其它部位的相同。  相似文献   

7.
目的:观察尼氟灭酸(NFA)对大鼠背根神经节(DRG)神经元γ-氨基丁酸(GABA)激活电流的调制作用。方法:在新鲜分离的大鼠DRG神经元,应用全细胞膜片钳技术记录NFA和GABA激活电流。结果:部分DRG神经元(21/48,43.75%)外加NFA(0.1~100μmol/L)能引起浓度依赖性的外向电流,而大多数DRG神经元(150/159,94.32%)外加GABA(0.1~100μmol/L)则引起明显的浓度依赖性的内相电流。NFA-(100μmol/L)和GABA-(100μmol/L)激活电流的幅值分别是(0.27±0.06)nA(n=12)和(1.29±0.72)nA(n=53)。然而,预使用NFA(0.1~100μmol/L)能明显的抑制GABAA受体介导的内向电流。NFA的这一抑制作用也具有明显的浓度依赖性。但NFA没有改变GABA激活内向电流的EC50(大约30μmol/L)和翻转电位(大约-10mV)(P>0.05)。结论:预加NFA对GABA激活电流的峰值有明显的浓度依赖性的抑制作用。  相似文献   

8.
弱激光对大鼠海马神经元钠通道特性的影响   总被引:6,自引:0,他引:6  
利用波长670nm、功率5mW的半导体激光器照射急性分离的大鼠海马CA3区锥体神经元,应用全细胞膜片钳技术研究其电压门控Na 通道的特性.实验发现:弱激光作用5min时,Na 通道激活电位和峰值电位开始向负电位方向移动,7min激光作用达稳定;激光照射对Na 通道电流峰值无影响,对照组和激光照射组峰值电流密度分别为(-383.51±26.93)pA/pF和(-368.36±33.14)pA/pF(n=8,P>0.05);激光作用降低了Na 通道的激活阈值电位和峰值电位,对照组通道电流在-40mV激活,-30mV达峰值,激光照射组通道电流在-60mV激活,-40mV达峰值;激光照射改变了Na 通道半数激活电压和斜率因子,对照组和激光照射组的半数激活电压分别为(-42.091±1.537)mV和(-54.971±1.846)mV(n=8,P<0.01),斜率因子分别为(1.529±0.667)mV和(2.634±0.519)mV(n=8,P<0.05).结果表明,弱激光照射海马神经元可改变Na 通道的激活特性,从而影响动作电位的去激化过程,进而会引起神经元细胞生理功能发生变化.  相似文献   

9.
药物成瘾是一种由药物滥用所引起的慢性、复发性的精神疾病,主要特征是不计后果的强迫性用药。药物成瘾涉及多个脑区的神经可塑性改变。前边缘皮质(prelimbic cortex, PrL)是背内侧前额叶皮质的主要区域,有大量的锥体神经元,其兴奋性神经投射可以促进可卡因觅药行为。PrL还存在少量GABA能中间神经元,对PrL的兴奋性神经元功能、信息整合和传递起到重要的调控作用,而这一部分神经元在药物成瘾过程中的作用并不清楚。小清蛋白(parvalbumin, PV)和生长激素抑制素(somatostatin, SST)神经元是前额叶皮质中分布广泛的两类主要的抑制性GABA能中间神经元。本研究利用PV-Cre和SSTCre的转基因小鼠,结合化学遗传学的方法探究PrL中间神经元在吗啡引起的行为学改变中的作用。结果显示,特异性抑制PrL脑区SST神经元可以显著增加小鼠的焦虑水平,但不影响小鼠的运动能力;抑制PrL脑区SST神经元降低小鼠吗啡诱导的活动性增强及条件位置偏爱;而抑制PrL脑区PV神经元则对小鼠的运动能力、焦虑水平及吗啡引起的行为学改变均没有显著影响。本研究通过对PrL脑区PV及SST中间神经元在吗啡诱导的行为学改变中作用的研究,为成瘾药物作用的细胞及神经基础提供了依据。  相似文献   

10.
谷氨酸对原代培养海马神经元的兴奋特性   总被引:2,自引:0,他引:2  
目的:探索谷氨酸对培养大鼠海马神经元的兴奋特性.方法:分离及培养1日龄SD大鼠海马神经元,第9~15 d用膜片钳检测不同浓度谷氨酸对神经元兴奋特性,包括细胞膜电位、去极化/动作电位的影响.结果:谷氨酸降低海马神经元静息膜电位,诱发去极化/动作电位,高浓度谷氨酸处理组神经元的静息膜电位比低浓度组降低显著;100μmol/L谷氨酸长时间处理组的神经细胞膜电位显著低于短时间处理组.结论:谷氨酸对海马神经元兴奋性有浓度和时间依赖性.  相似文献   

11.
The patients suffering from acidosis usually sign psychological deficits. The cerebral dysfunction is reportedly caused by an acid-induced functional impairment of GABAergic neurons; however, the role of pyramidal neurons in this process remains unclear. By using electrophysiological method and changing extracellular pH, we investigated the influence of acidic environment on pyramidal neurons in the cortical slices, such as their ability of firing spikes and response to synaptic inputs. A low pH of artificial cerebral spinal fluid elevates the responses of pyramidal neurons to excitatory synaptic inputs and their ability of encoding digital spikes, as well as reduces the signal transmission at GABAergic synapses. The elevated ability of neuronal spiking is associated with the decreases of refractory periods and threshold potentials. Therefore, acidosis deteriorates brain functions through making the activities between cortical pyramidal neurons and GABAergic neurons imbalanced toward the overexcitation of neural networks, a process similar to neural excitotoxicity.  相似文献   

12.
Acidosis, associated with metabolic disorders, leads to the pathological changes of cognition and behavior in the clinical practices of neurology and psychology. The cellular mechanisms underlying these cerebral dysfunctions remain unclear. By using electrophysiological approach and changing extracellular pH, we have investigated the effects of acidic environment on cortical GABAergic neurons in terms of their abilities of firing spikes and responses to synaptic inputs. Artificial cerebral spinal fluid in low pH impairs the responses to excitatory synaptic inputs and the abilities of encoding sequential spikes at these GABAergic neurons. The impairments of neuronal spiking are associated with the increases of refractory periods and threshold potentials. Our studies reveal that acidosis may impair cortical GABAergic neurons and in turn deteriorate brain functions, in which their final targets are voltage-gated sodium channels and glutamate receptor-channels.  相似文献   

13.
Spike encoding at GABAergic neurons plays an important role in maintaining the homeostasis of brain functions for well-organized behaviors. The rise of intracellular Ca2+ in GABAergic neurons causes synaptic plasticity. It is not clear how intracellular Ca2+ influences their spike encoding. We have investigated this issue at GFP-labeled GABAergic cortical neurons and cerebellar Purkinje cells by whole-cell recording in mouse brain slices. Our results show that an elevation of intracellular Ca2+ by infusing adenophostin-A lowers spike encoding at GABAergic cortical neurons and enhances encoding ability at cerebellar Purkinje cells. These differential effects of cytoplasmic Ca2+ on spike encoding are mechanistically associated with Ca2+-induced changes in the refractory periods and threshold potentials of sequential spikes, as well as with various expression ratios of CaM-KII to calcineurin in GABAergic cortical neurons and cerebellar Purkinje cells.  相似文献   

14.
GABAergic neurons play a critical role in maintaining the homeostasis of brain functions for well-organized behaviors. It is not known about the dynamical change in signal encoding at these neurons during postnatal development. We investigated this issue at GFP-labeled GABAergic neurons by whole-cell recording in cortical slices of mice. Our results show that the ability of spike encoding at GABAergic neurons is improved during postnatal development. This change is associated with the reduction of refractory periods and threshold potentials of sequential spikes, as well as the improvement of linear correlations between intrinsic properties and spike capacity. Therefore, the postnatal maturation of the spike encoding capacity at GABAergic neurons will stabilize the excitatory state of cerebral cortex.  相似文献   

15.
Acid-base imbalance leads to pathological cognition and behaviors in the clinical practices. In the comparison with acidosis, the cellular mechanisms underlying alkalosis-induced brain dysfunction remain unclear. By using electrophysiological approach, we investigated the influences of high extracellular pH environment on cortical GABAergic neurons in terms of their responsiveness to synaptic inputs and their ability to produce action potentials. Artificial cerebral spinal fluid in high pH impairs excitatory synaptic transmission and spike initiation in cortical GABAergic neurons. The alkalosis-induced dysfunction of GABAergic neurons is associated with the decrease of receptor responsiveness and the increases of spike refractory periods and threshold potentials. Our studies reveal that alkalosis impairs cortical GABAergic neurons and subsequently deteriorate brain functions. The molecular targets for alkalosis action include glutamate receptor-channels and voltage-gated sodium channels on GABAergic neurons.  相似文献   

16.
Neural codes to guide well-organized behavior are thought to be the programmed patterns of sequential spikes at central neurons, in which the coordinative activities of voltage-gated ion channels are involved. The attention has been paid to study the role of potassium channels in spike pattern; but it is not clear how the intrinsic mechanism mediated by voltage-gated sodium channels (VGSC) influences the programming of sequential spikes, which we investigated at GABAergic cerebellar Purkinje cells and hippocampal interneurons by patch-clamp recording in brain slices. Spike capacity is higher at Purkinje cells than interneurons in response to the given intensities of inputs, and is dependent on input intensity. Compared to interneurons, Purkinje cells express the lower threshold potentials and the shorter refractory periods of sequential spikes. The increases of input intensities shorten spike refractory periods significantly. The threshold potentials for VGSC activation and the refractory periods for its reactivation are lower at Purkinje cells, and are reduced by the strong depolarization. We suggest that the VGSC-mediated threshold potentials and refractory periods are regulated by synaptic inputs, and navigate the programming of sequential spikes at the neurons.  相似文献   

17.
Alkalosis associated with elevated pH is characteristic of many clinical pathologies. Respiratory alkalosis is a result of hyperventilation, i.e., reduced partial CO2 pressure in alveolar air and blood. Yet another type of alkalosis, i.e., metabolic alkalosis, is associated with an absolute or relative increase in the levels of alkaline compounds in the organism. Despite high toxicity of the latter, mechanisms whereby these compounds exert their toxic effects remain obscure. In multicellular organisms, cell survival is controlled by a vast variety of factors, such as autocrine survival factors (AF) specifically targeted at cells that secrete them. Our previous studies (Lutsenko and Diachkova, 2003) demonstrated that AF control cell survival and energy metabolism in T-lymphocytes. In this study, combined effects of AF deficiency and alkalosis (pH 8.3) on cell survival, intracellular content of ATP and mitochondrial transmembrane potential of T-lymphocytes were studied using an IL-2-dependent cell line CTLL-2. It was found that in the absence of AF deficiency, alkalosis had no effect on survival of cultured CTLL-2 cells. The main mechanism of protection of CTLL-2 cells against cytotoxic effects of alkalosis was an enhanced anaerobic glycolysis and consequential increase in the lactate production. In contrast, alkalosis combined with AF deficiency caused a substantial decrease of cell survival, which lowered down to 53% after 6 h and to about 10 % after 20 h of culturing under these conditions. The ATP content dropped down sharply under the AF deficiency even at pH 7.3 but gradually restored to the initial level within the next 2-3 h; cell survival was at a high level under these conditions. Alkalosis combined with the AF deficiency notably worsened the functional state of the cells; ATP content in them remained at a low level over the whole period of the alkaline stress. After a 2-h incubation under alkalosis and AF deficiency, 23% of cells contained depolarized mitochondria; lactate production was notably suppressed. The data obtained suggest that the reduction of the intracellular ATP level in CTLL-2 cells under alkalosis and AF deficiency are due to inhibition of anaerobic glycolysis and mitochondrial dysfunction. Cell death developed predominantly via the necrotic rather than the apoptotic pathway.  相似文献   

18.

Background

Action potentials are the essential unit of neuronal encoding. Somatic sequential spikes in the central nervous system appear various in amplitudes. To be effective neuronal codes, these spikes should be propagated to axonal terminals where they activate the synapses and drive postsynaptic neurons. It remains unclear whether these effective neuronal codes are based on spike timing orders and/or amplitudes.

Methodology/Principal Findings

We investigated this fundamental issue by simultaneously recording the axon versus soma of identical neurons and presynaptic vs. postsynaptic neurons in the cortical slices. The axons enable somatic spikes in low amplitude be enlarged, which activate synaptic transmission in consistent patterns. This facilitation in the propagation of sequential spikes through the axons is mechanistically founded by the short refractory periods, large currents and high opening probability of axonal voltage-gated sodium channels.

Conclusion/Significance

An amplification of somatic incomplete spikes into axonal complete ones makes sequential spikes to activate consistent synaptic transmission. Therefore, neuronal encoding is likely based on spike timing order, instead of graded analogues.  相似文献   

19.
Neurons in the central nervous system are thought to program neural language via firing sequential spikes for guiding animal behaviors. The quantitative profiles of spike intrinsic properties are critically important to understand spike programming. We developed approaches with whole-cell recordings to measure the threshold potentials and refractory periods (RPs) of sequential spikes, and to analyze the relationships of these factors with spike timing precision and capacity at the regular-spiking and fast-spiking neurons in cortical slice. The RPs and threshold potentials of sequential spikes at these two groups of neurons are different and are linearly correlated with spike timing precision and capacity. These data suggest that RPs and threshold potentials essentially navigate the spike programming for the precise and loyal encoding of meaningful neural signals. Our study provides the avenues for decoding the spectrum of the neural signals quantitatively.  相似文献   

20.
Pozas E  Ibáñez CF 《Neuron》2005,45(5):701-713
Cortical GABAergic neurons are generated in the ventral telencephalon and migrate dorsally into the cortex following a tangential path. GDNF signaling via GFRalpha1 was found to promote the differentiation of ventral precursors into GABAergic cells, enhancing their neuronal morphology and motility. GDNF stimulated axonal growth in cortical GABAergic neurons and acted as a potent chemoattractant of GABAergic cells. These effects required GFRalpha1 but neither RET nor NCAM, the two transmembrane signaling receptors known for GDNF. Mutant mice lacking GDNF or GFRalpha1, but neither RET nor NCAM, showed reduced numbers of GABAergic cells in the cerebral cortex and hippocampus. We conclude that one of the normal functions of GDNF signaling via GFRalpha1 in the developing brain is to promote the differentiation and migration of cortical GABAergic neurons. The lack of involvement of RET or NCAM in these processes suggests the existence of additional transmembrane effectors for GDNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号