首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
城市森林发挥着改善和维护城市生态环境质量的作用, 研究城市森林生物量和分布特点对其生态系统服务评价和林分经营均具有重要意义。该文根据上海城市森林的种植分布和经营状况利用2011年6月-2012年6月样地实测森林生物量数据和同期Landsat ETM+遥感图像, 在基于逐步回归分析建立森林生物量反演模型的基础上, 引入回归残差及空间分析, 研究了城市森林及其主要优势树种樟(Cinnamomum camphora)林分的生物量分布特征, 探讨了区域尺度森林生物量的遥感估测方法。结果表明: (1)上海城市森林生物量密度总体呈现中心城区(静安区、黄浦区等)较高, 生物量密度集中在35-70 t·hm-2之间, 郊区(嘉定区、青浦区等)空间分布状况相对较低, 生物量密度介于15-50 t·hm-2之间的变化特征。上海优势树种樟林分生物量密度范围为20-110 t·hm-2; 空间上呈现出东北部较高、西南部较低的变化特征。(2)上海城市森林及樟林分的生物量总量分别为3.57 Tg和1.33 Tg。林地面积小, 具有较高森林生物量密度的上海中心城区, 其森林生物量占总量的6.1%, 其中林地面积最小的静安区生物量最低, 仅占总量的0.11%。在所有区县中, 林地面积最大的崇明县、浦东新区具有较高的森林生物量, 分别占总量的20.08%和19.18%。(3)所建立的基于回归反距离插值的城市森林生物量估测模型, 其标准误差、平均绝对误差、平均相对误差分别为8.39、6.86、24.22%, 较回归模型分别降低了57.69%、55.43%、64.00%, 较空间插值的方法分别降低了62.21%、58.50%、65.40%。残差的引入减少了由于空间变异引发的城市森林生物量遥感估测的不确定性。相比基于实测数据通过空间插值的估测, 遥感为快速便捷、客观高效的森林生物量监测提供了可能, 更加完善的结果和模型的优化有待引入其他信息源如高分高光谱信息或改善残差空间分析方法获得。  相似文献   

2.
为了建立基于遥感影像和环境因子的森林碳密度估测的有效方法,本文基于2009年森林清查数据和SPOT遥感影像,以山西省阳泉地区为例,采用生物量换算因子连续函数法对研究区乔木林地上生物量和碳密度进行估算;在此基础上,选取遥感影像、环境因子(海拔、坡度、坡向等)为自变量,利用增强型BP神经网络建立研究区乔木林碳密度估算模型并输出空间分布图。结果表明:阳泉地区乔木林生物量为552774 t,碳密度为11.38t·hm-2;从不同林型、林龄和起源的生物量及碳密度来看,针叶林、幼龄林、人工林的生物量最大,阔叶林、成熟林、天然林的碳密度最大;采用增强型BP神经网络可以很好地模拟乔木林碳密度,针叶林、阔叶林、针阔混交林仿真结果的平均相对误差和平均相对误差的绝对值分别2.40%、6.87%、-4.09%和6.83%、2.77%、3.99%;基于BP神经网络模型输出乔木林碳密度空间分布图,模拟精度达到85.05%,进一步验证了人工神经网络能为森林碳密度提供快速准确的估测,为今后的森林资源调查和管理提供了科学依据。  相似文献   

3.
提高林分碳储量估测精度,对于研究区域尺度上森林固碳功能具有重要的意义。本文以上海外环林带女贞(Ligustrum lucidum)人工林为研究对象,构建了女贞立木及各器官(根、干、皮、枝、叶)生物量方程,并对9年生女贞人工林乔木层、地表枯落物层和土壤层(0~100 cm)碳储量进行了估测。结果表明,女贞立木及各器官生物量方程拟合效果较好(R20.9,P0.01)。女贞人工林生态系统总碳储量为169.89 t·hm-2,其中林分乔木层碳储量为10.48 t·hm-2,地表枯落物层碳储量为1.54 t·hm-2,林分土壤(0~100 cm)碳储量所占比例最大,为157.7 t·hm-2。在女贞人工林乔木层生物量中,树干占林木生物量的比例最大(40%),其次分别为枝(20%)、根(15%)、叶(11%)和皮(4%)。  相似文献   

4.
湖北省主要森林类型生态系统生物量与碳密度比较   总被引:2,自引:0,他引:2  
利用野外调查数据对湖北省封山育林下的次生林、次生林、人工林森林生态系统碳密度进行了分析,结果表明:封山育林下的次生林、次生林和人工林生态系统乔木层平均碳密度分别为133.87、73.42和111.62t·hm-2,灌木层平均碳密度分别为1.65、1.40和1.52t·hm-2,草本层平均碳密度分别为0.13、0.09和0.13t·hm-2,枯落物层平均碳密度分别为0.47、1.34和0.93t·hm-2,乔木层碳密度作为生态系统碳储量的主要贡献者占总生物碳密度的98.35%、96.29%和97.74%,林下植被(灌木层和草本层)碳密度分别占1.31%、1.95%和1.44%,凋落物层碳密度分别占0.34%、1.76%和0.82%。土壤(0~100cm)碳密度平均值分别为57.04、66.92和54.12t·hm-2,土壤碳密度的60%储存在0~40cm土壤中,并随土层深度增加,各层次土壤碳密度逐渐减少。森林生态系统的乔木层、灌木层、草本层、凋落物层生物量和土壤层碳密度均表现出:封山育林下的次生林、次生林大于人工林。封山育林下的次生林、次生林和人工林碳密度分布序列为土壤(0~100cm)>乔木层>灌木层>草本层>枯落物层。可见,封山育林下的次生林更有助于提高森林碳汇,实施近自然林经营是提升该区域森林碳汇能力的重要途径。  相似文献   

5.
森林碳储量研究对森林质量评价、林业资源科学管理及森林生态结构保护具有重要意义。以四川省马尔康县梭磨乡冷杉林为研究对象, 以2010年森林资源调查实测数据和同年Landsat遥感影像数据为基础, 采用逐步线性回归方法, 构建2010年地面冷杉林地上碳储量和遥感因子的多元线性回归模型。然后, 基于伪不变特征原理的相对辐射校正法计算2010年冷杉林地上碳储量估测模型与1995年、2000年、2005年和2015年四期影像数据的相关关系, 分别估测了1995年、2000年、2005年、2010年和2015年研究区冷杉林地上碳储量, 从而揭示出近20年来马尔康县梭磨乡冷杉林地上碳储量的时空动态变化特征。研究结果表明: 从空间分布看, 研究区冷杉林地上碳储量主要分布在贯穿全区东西方向且海拔3000—4000 米的区域; 从时间分布看, 1995—2015年间, 研究区冷杉林地上碳储量总量和碳密度呈持续上升趋势, 森林碳储量结构处于良性发展阶段。该研究结果对高山峡谷地区森林碳储量的后续研究有一定参考价值。  相似文献   

6.
贵州省森林生物量及其空间格局   总被引:4,自引:0,他引:4  
Tian XL  Xia J  Xia HB  Ni J 《应用生态学报》2011,22(2):287-294
利用1996—2000年贵州省森林资源连续清查5500个样地的资料,依据主要森林类型蓄积量-生物量的转换函数估算贵州省各种林地的生物量,分析其空间分布格局,以及喀斯特和非喀斯特地貌上森林生物量的差异.结果表明:贵州省林地和非林地乔灌木的总生物量为3.51×108 t,其中非喀斯特林木占82%,喀斯特林木占18%.不同林地类型的生物量存在差异,林分生物量最高,占总林地生物量的71.4%.喀斯特林地总生物量明显低于非喀斯特林地.不同优势种(组)中,杉木林总生物量最高,达5.38×107 t,硬阔类为4.99×107 t,马尾松、云南松及栎类在2.87×107~3.54×107 t,柏木和软阔叶类分别为1.52×107 t和1.43×107 t,其他优势种(组)均低于1.0×107 t.行政区划上,黔东南州的林地总生物量(9.83×107 t)和林分生物量(5.88×107 t)为遵义、铜仁和黔南地区的2~3倍,且远高于黔西南、毕节、贵阳、安顺和六盘水地区(总生物量为0.53×107~1.85×107 t,林分生物量为0.16×107~0.86×107t).高生物量(>400 t·hm-2)和中高生物量密度(100...  相似文献   

7.
马尾松人工林采伐剩余物生物量及养分贮量   总被引:1,自引:0,他引:1  
研究马尾松人工林采伐剩余物各组分生物量和养分贮量分配特征,可为其地力维护研究提供基础数据,为人工林的科学经营和生态管理提供理论依据。在广西南部马尾松人工林皆伐林地采用样方收获法获取采伐剩余物各组分生物量,测定其养分含量并计算养分贮量。结果表明:马尾松人工纯林皆伐后林地采伐剩余物生物量为39.1 t·hm-2,碳、氮、磷、钾、钙和镁贮量分别为18303、101.2、8.3、73.4、96.0和24.7 kg·hm-2。不同组分间比较,生物量和碳贮量均是小枝最高(分别占总量的25.3%和23.3%),其次是大枝(21.7%和21.1%)和主根(17.1%和18.5%),粗根(11.5%和12.4%)和叶(9.2%和9.1%)也较高;氮、磷、钾、钙和镁贮量排在前三位的组分均是叶、小枝和大枝(三者之和分别占各养分总量的70.5%、76.5%、72.2%、76.2%和72.6%),其次为主根和粗根;而中根、小根和细根无论是生物量还是各养分贮量均很低。马尾松人工林采伐剩余物的生物量和养分储量庞大,尤其是残留在地表的枝和叶,因此保留采伐剩余物的林地更新方式对于维护其林地生产力具有重要意义。  相似文献   

8.
三峡库区植被生物量和生产力的估算及分布格局   总被引:8,自引:2,他引:6  
三峡工程对三峡库区的生态环境将会产生巨大影响,对库区生物量和生产力的本底研究具有重要的科学意义和历史价值.以108块临时样地及森林资源清查数据为基础,对三峡库区植被生物量和生产力进行估算,结果表明:(1)三峡库区植被总生物量和年生产力分别为1.17×108t、1.77×107t,占全国森林植被的0.91%和3.62%,均高于全国平均水平;(2)三峡库区马尾松林生物总量最多,达到4.14×107t,常绿阔叶林单位面积生物量最高,为85.60t hm-2;(3)竹林的NPP最高,为10.10t a-1 hm-2,柏木林最低,仅为4.21t a-1 hm-2;(4)三峡库区植被平均生物量和NPP均呈现"东高西低,北高南低"的分布格局,与经纬度没有明显相关性;(5)森林植被平均生物量随着海拔上升而增加,在海拔为1500~1800m范围内达到最大值59.05t hm-2,随后迅速下降.(6)NPP随海拔变化呈现"先减后增随后又减"的规律,最大值出现在900~1200m区段,为7.07t a-1 hm-2;(7)库区海拔在300~1500m间的森林植被总生物量和总生产力分别为8.15×107t和10.38×106t a-1,占整个库区的83.58%和83.83%.  相似文献   

9.
苏华  李静  陈修治  廖吉善  温达志 《生态学报》2017,37(17):5742-5755
基于福建省Landsat8 OLI影像,利用混合像元分解模型筛选出"纯净"的植被像元,提取296个调查样地对应植被像元的红光和近红外波段的中心波长(分别CWR和CWNIR)及其对应的反射率(分别R和NIR),构建以(NIR-R)/(CWNIR-CWR)为特征指数的叶生物量回归模型。然后根据针叶林、阔叶林及针阔混交林叶生物量与干、枝、叶所组成的地上生物量的关系方程,结合福建省植被覆盖分类数据,估测了整个福建省针叶林、阔叶林、混交林的地上生物量,并绘制了福建省地上生物量分布图。结果表明:红光和近红外两个波段反射率和其中心波长所组成的斜率与叶生物量相关性显著,与针叶林、阔叶林、混交林叶生物量的精度分别达到70.55%、68.89%、51.75%,采用这种方法对福建省叶生物量和地上总生物量进行估算,并进行精度验证,其中,针叶林、阔叶林、混交林叶物量的模型误差(RMSE)分别达到29.2467 t/hm~2(R~2=66.64%)、14.0258 t/hm~2(R~2=61.13%)、10.1788 t/hm~2(R~2=55.43%),地上总生物量的模型精度分别达到49.8315 t/hm~2(R~2=54.65%)、45.1820 t/hm~2(R~2=49.01%)、41.5131 t/hm~2(R~2=38.79%),这说明,采用红光波段和近红外波段与其中心波长所组成的斜率估测森林叶生物量,进而估算其地上总生物量的方法是可行的。  相似文献   

10.
退耕还林地桦木林生态系统碳素密度、贮量与空间分布   总被引:7,自引:0,他引:7  
对退耕还林5年生的桦木林生物量、碳素密度、碳贮量及其空间分布进行测定。结果表明,桦木各器官的碳素密度在0.4519~0.5137gC.g-1,排列顺序为枝>干>叶>根颈>粗根>中根>细根;死地被物层的碳素含量为0.3953gC.g-1,土壤平均碳素密度为0.0150gC.g-1,随土层深度的增加,各层次土壤碳素密度呈逐渐减少的趋势;桦木林生态系统总的碳贮量为127.9298tC.hm-2,其中乔木层为21.9282tC.hm-2,占整个生态系统的17.14%,死地被物为0.3401tC.hm-2,占0.27%,林地土壤(0~60cm)为105.6615tC.hm-2,占82.59%;桦木各器官的碳贮量与其生物量成正比例的关系,树干的生物量最大,其碳贮量也最大,占乔木层碳贮量的57.33%;5年生桦木林年净生产力为8.9912t.hm-2.a-1,有机碳年固定量为4.4537tC.hm-2.a-1。较之退耕前,桦木林生态系统碳贮量增加15.4797t.hm-2。  相似文献   

11.
冰雪灾害对粤北天然次生林的损害及产生的林冠残体量   总被引:3,自引:0,他引:3  
采用样地调查和取样,研究了2008年初中国南方冰雪灾害对粤北天然次生林的损害特征及其产生的林冠残体量.结果表明,灾害对粤北天然林造成严重损害,林木受害特征主要是胸径较大的植株断枝、断梢和断干较多,胸径较小的容易压弯,坡度大的林分翻蔸受害率增加.灾后林地林冠残体总量为38.12~43.52 t hm-2,平均41.25 t hm-2;地表凋落叶11.79~12.87 t hm-2,平均12.47 t hm-2;灾害产生的枝、干木质残体量为24.27~30.65 t hm-2,平均28.41 t hm-2.天然常绿阔叶林产生的林冠残体量较常绿与落叶混交林和杉木人工林大,造成林地林冠残体量骤增,一方面使林地存在严重安全隐患(如发生火灾和病虫害的风险增加),另一方面大量的林冠残体归还林地、改变了森林生态系统的结构与功能.  相似文献   

12.
基于森林植被及土壤类型的垂直分布状况,根据海拔设置了18个标准样地,对广西猫儿山国家级自然保护区森林乔木冠层、林下灌草层、林地枯枝落叶层和林地土壤层的涵养水源能力进行了调查与估测,并对该保护区森林涵养水源的经济价值进行了估算.结果表明,该保护区森林乔木冠层平均截留雨量为3 097.7×104 t·a-1,占总贮水量的27.8%.林下灌草层平均截留雨量为517.2×104 t·a-1,占总贮水量的4.6%.各森林类型中枯落物的累积干质量为3.00~15.56 t·hm-2,最大吸水量和最大净吸水量分别为8.64~45.44和5.64~33.58 t·hm-2,平均净吸水量为19.58 t·hm-2;林地枯枝落叶层的平均吸持贮水量为2 664.2×104 t·a-1,占总贮水量的23.9%.不同林地100 cm土层的贮水量为355.2~1 940.0 t·hm-2,林地土壤层平均贮水量为4 876.0×104 t·a-1,占总贮水量的43.7%.该保护区森林植被4个水文层次实际的总贮水量为11 155.1×104 t·a-1,折算成货币价值后,则该保护区森林涵养水源总效益应为人民币13 386.1×104 元·a-1.调查统计结果充分说明,广西猫儿山国家级自然保护区森林植被的涵养水源功能及其生态经济效益相当显著,对于维护和保障周边地区的生态安全、维持工农业生产的可持续发展具有非常重要的作用.  相似文献   

13.
三种森林生物量估测模型的比较分析   总被引:2,自引:0,他引:2       下载免费PDF全文
森林生物量的定量估算为全球碳储量、碳循环研究提供了重要的参考依据。该研究采用黑龙江长白山地区的TM影像和133块森林资源一类清查样地的数据, 选取地学参数、遥感反演参数等71个自变量分别构建多元逐步回归模型、传统BP (back propagation)神经网络模型和基于高斯误差函数的BP神经网络改进模型(Gaussian error function, Erf-BP), 进而估算该地区的森林生物量, 并进行比较分析。结果表明, 多元逐步回归模型估测的森林生物量预测精度为75%, 均方根误差为26.87 t·m-2; 传统BP神经网络模型估测森林生物量的预测精度为80.92%, 均方根误差为21.44 t·m-2; Erf-BP估测森林生物量的预测精度为82.22%, 均方根误差为20.83 t·m-2。可见, 改进后的Erf-BP能更好地模拟生物量与各个因子之间的关系, 估算精度更高。  相似文献   

14.
三峡库区森林生态系统有机碳密度及碳储量   总被引:12,自引:0,他引:12  
森林生态系统作为陆地生态系统的重要组成部分,在减缓全球气候变化过程中发挥重要作用.基于104块样地调查和森林资源二类清查数据,运用GIS平台,对三峡库区森林生态系统有机碳密度及储量进行研究,结果表明:(1)三峡库区森林优势树种各器官的含碳率为44.59%~54.45%,森林凋落物含碳率为30.61%~42.73%,平均为36.38%;(2)三峡库区森林生态系统平均碳密度为117.68t · hm-2,低于我国森林平均水平;植被层碳密度平均为24.15 t · hm-2,其中常绿阔叶林植被层碳密度最高,达42.80 t · hm-2;枯落物层平均碳密度为2.74 t · hm-2,土壤有机碳密度平均为9.09 kg · m-2;(3)三峡库区森林生态系统总有机碳储量为286.14×106t,其中植被层碳储量为58.72×106t,凋落物碳储量为6.67×106t,土壤碳储量为220.74×106t;(4)三峡库区马尾松林分布面积最大,其总有机碳储量为77.24×106t,占三峡库区森林有机碳总储量的26.99%;在各森林类型中,马尾松林植被层、凋落物层和土壤层有机碳储量均最高,分别达到20.70 × 106t、2.66×106t和53.89×106t;(5)三峡库区森林有机碳密度呈现"东高西低"分布格局,巴东-秭归、巫山-巫溪、石柱-武隆及江津南部有机碳密度较高.在三峡库区提高森林质量、扩大森林面积是增强森林生态系统碳汇功能的有效途径.  相似文献   

15.
四川省森林植被碳储量的空间分异特征   总被引:8,自引:0,他引:8  
黄从德  张健  杨万勤  唐宵  张国庆 《生态学报》2009,29(9):5115-5121
森林植被碳储量的空间分异特征研究可为以减排增汇为目标的森林生态系统碳库管理提供重要的基础数据.根据实测的林分含碳量和区域生物量-蓄积量回归模型计算了四川省森林植被碳储量,使用ArcGIS软件绘制和分析了四川森林植被碳储量的空间分异特征.结果表明,四川省森林植被的平均碳密度为38.04 MgC·hm-2(12.15~59.51 MgC·hm-2).受青藏高原隆升和人类活动干扰及其叠加效应的影响,四川森林植被碳密度空间分异明显,总体上表现出随纬度、海拔高度和坡度的增加而增加,随经度的增加而减小,高海拔地区和陡坡地带具有较高的碳密度.减少人类活动对森林的破坏及采取森林分区经营管理是稳定和增强四川森林碳汇功能的有效途径.  相似文献   

16.
长白落叶松林生物量的模拟估测   总被引:3,自引:0,他引:3  
利用样木收获法收集了34个样地中长白落叶松林分地上部分生物量信息,选取其中29个样地生物量信息分别与样地林分因子信息和TM遥感影像信息拟合建立生物量模型,利用其余5个样地的生物量信息进行模型精度检验和误差分析.结果表明:长白落叶松地上部分生物量均可用林分因子和遥感因子进行线性拟合;林分因子线性模型对长白落叶松中幼林地上生物量的估测精度较高(林分P=94.33%,遥感P=92.32%),且检验误差较小(林分MRE=6%,遥感MRE=31%),模型模拟效果较好;若只考虑长白落叶松中龄林,这2种模型的估测效果相当(林分模型和遥感模型的误差分别为329.9和313.6 t).整体而言,林分因子模型估测长白落叶松树皮、干材和总生物量的效果优于遥感因子模型,对于中龄林来说,遥感模型估测叶花果、树枝和树冠生物量的效果较好.  相似文献   

17.
森林在区域和全球碳循环中起着关键作用,不同森林类型生物量和碳密度的精确估算是区域森林碳储量研究的重要基础。以2005和2010年吕梁山南段2期森林资源清查资料为基础,采用加权生物量回归模型法和转换因子连续函数法对森林乔木层的生物量进行估算,发现前者估算结果显著高于后者(P0.01),加权生物量回归模型法更适宜于中小尺度生物量估算。依据回归模型法获得的28×112(物种×样方)碳密度矩阵,对森林群落进行TWINSPAN分类和DCA、CCA排序;采用单因素方差分析和相关分析对不同生境条件下乔木层的碳密度进行研究。结果表明:吕梁山南段森林群落可分为8个群系,不同群系间碳密度差异显著(P0.01),其中辽东栎+色木槭群系和辽东栎+油松群系显著高于其他群系,白皮松+侧柏群系最低。2010年乔木层碳密度显著高于2005年,平均每年以1.54 t·hm-2的速度增加。乔木层碳密度与海拔或坡度呈显著相关,随海拔或坡度的增加碳密度呈先增后降的趋势。阴坡和半阴坡(北坡和东坡)碳密度大于阳坡和半阳坡(南坡与东南坡),山脊碳密度最小。因地制宜进行物种选择和抚育管理,可显著提高森林碳密度。  相似文献   

18.
森林生态系统是最重要的陆地生态系统碳库,人工林生态系统碳储量在森林碳储量中所占比重越来越大。本研究选取天津平原地区不同林龄杨树人工林,通过野外调查和室内分析,估算了杨树人工林乔木、草本、凋落物和土壤碳储量。结果表明:人工杨树幼龄林、中龄林和成熟林的乔木生物量分别为43.65、56.18和121.59 t·hm-2,乔木各组分生物量所占比例在幼龄林和中龄林中表现为干根枝叶,在成熟林中表现为干枝根叶。3个林龄段杨树人工林的草本层生物量分别为4.60、2.92和1.58 t·hm-2,凋落物生物量分别为0.46、0.35和0.66 t·hm-2。人工杨树幼龄林、中龄林和成熟林生态系统碳储量分别为84.34、121.03和121.72 t C·hm-2,其中群落碳储量分别占25.85%、22.25%和46.58%,土壤碳储量分别占74.15%、77.75%和53.42%。群落碳储量中乔木碳储量分别为20.04、25.78和55.95 t C·hm-2;草本碳储量分别为1.63、1.05和0.57 t C·hm-2;凋落物碳储量分别为0.14、0.10和0.19 t C·hm-2。3个林龄段杨树人工林土壤有机碳储量(0~100 cm)依次为62.53、94.10和65.03 t C·hm-2,其中0~30 cm土壤有机碳储量所占比例分别为33.91%、37.64%和44.16%,随林龄的增加而增加。结果表明,杨树人工林生态系统碳储量随林龄的增加显著增加,而目前天津杨树人工林以幼龄林为主,未来天津杨树人工林存在巨大的碳储存空间。  相似文献   

19.
上海城市森林群落结构对固碳能力的影响   总被引:5,自引:0,他引:5  
基于上海市区航片数字化、代表性样地群落调查、优势树种生理参数测定和CITYgreen模型软件,对上海城市森林固碳能力进行评估,并探讨群落结构对固碳能力的影响。结果表明:上海城市森林总碳贮量为478472t,年碳固定量为6256t.a-1,平均碳密度为47.80t.hm-2,平均固碳率为0.625t.hm-2.a-1;城市森林的固碳率与郁闭度及群落密度均呈极显著正相关,而与平均胸径负相关;碳密度与郁闭度及平均胸径均呈极显著正相关,而与群落密度无显著相关;低密度高胸径群落比中、高密度群落具有更高的碳密度;混交林碳密度高于纯林,复层林碳密度和固碳率都高于单层林,且固碳能力的差异在一定程度上受平均胸径、群落密度等因子影响。  相似文献   

20.
基于第六次、第七次和第八次三期森林资源清查数据,采用森林蓄积(生长量)扩展方法,估测三峡库区森林生产力和碳储量及碳密度变化,并利用2012 年三峡库区林地“一张图”更新调查数据,制作森林碳密度等级分布图。同时采用气候潜力模型估测潜在生产力,对比现实生产力,研究三峡库区森林生产力和固碳能力状况。结果表明:1)三峡库区森林总生物量1.33×108 t,总碳储量0.68×108 t,其中马尾松和栎类碳储量所占比例较大(分别为42.1%和12.1%),碳密度呈“东高西低”的分布格局, 平均为37.36 t⋅hm–2; 2)2002-2012 年, 三峡库区森林碳储量从2002 年的40.51 Tg C 增加到2012 年的68.88 Tg C, 年均净增长2.84 Tg C, 森林的碳汇作用显著, 尤其是在2007-2012 年间的碳汇作用最强。3)三峡库区森林潜在生产力应在13.52 - 21.77 t⋅hm–2⋅a–1 之间, 现在库区林分生产力介于2.85 - 6.19 t⋅hm–2⋅a–1, 平均为4.75t⋅hm–2⋅a–1,仅为潜在生产力的21.8%-35.1%。显然,三峡库区森林碳储总量以及森林生产力和固碳能力明显提高,只要进一步加强森林经营管理,加大保护力度, 提高森林生产能力和固碳能力仍然具有非常巨大的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号