首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30-40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

2.
The modification of reverse micellar systems composed of AOT, isooctane, water by the addition of aprotic solvents has been performed. The impact of this change on the activity, stability and kinetics of solubilized Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3) was investigated. Of seven aprotic solvents tested, dimethyl sulfoxide (DMSO) was found to be most effective. It was found that lipase activity was enhanced by optimizing some relevant parameters, such as water–AOT molar ratio (W0), buffer pH and surfactant concentration. A kinetic model that considers the free substrate in equilibrium with the substrate adsorbed on the micellar surface was successfully used to deduce some kinetic parameters (Vmax, Km and Kad), and the values of Km and Kad were significantly reduced by the presence of DMSO. Higher lipase stability was found in AOT reverse micelles with DMSO compared with that in simple AOT systems with half-life of 125 and 33 days, respectively. Fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to elucidate the effects of DMSO on the properties of AOT reverse micelles.  相似文献   

3.
Reverse micelles formed by soybean lecithin in isooctane were used as a reaction medium for both the lipase-catalyzed hydrolysis as well as the synthesis of lipids. Neither reaction appears to follow Michaelis-Menten kinetics and it is suggested that the rates are diffusion controlled. The hydrolysis of para-nitrophenylpalmitate (PNPP) and, in particular, the pH-dependency of the lipase-catalyzed hydrolysis was then examined. The highest rate of reaction occurred at pHopt = 5–5.5, which was the same in water and lecithin reverse micelles, as well as in reverse micelles formed by bis(2-ethylhexyl)-sulfosuccinate (AOT) in isooctane. The dependence of the reaction rate on the water content of the micellar system was investigated for the same reaction. The maximal rate was found at an extremely low water content, i.e. at Wo = 2.2 (Wo = [H2O]/[Lecithin]). The temperature stability of the lipase in lecithin reverse micelles was also studied and found to be greater than in aqueous solutions. Studies of the dependence of the relative initial velocity on temperature have shown that the highest rate in reverse micelles is obtained at 60d`C.  相似文献   

4.
Activity and stability of lipase in Aerosol-OT/isooctane reverse micelles   总被引:2,自引:0,他引:2  
The stability of Candida rugosa lipase, which catalyzes the hydrolysis reaction of olive oil in AOT/isooctane reverse micelles, decreased with the increase of 0 (defined as the molar ratio of water to surfactant) and Aerosol-OT concentration. The addition of a non-ionic cosurfactant, tetraethylene glycol dodecyl ether (C12E4), preserved enzymatic activity. The residual activity of the lipase was 53% after 24 h, while the enzyme completely lost its activity within 6 h in the absence of C12E4 addition. The stabilizing effect of C12E4 resulted in the increase of conversion. The enhancement of the activity and stability of lipase in reverse micelles by the addition of C12E4 may contribute to increase the rigidity of the micellar matrix stabilizing the enzyme structure.  相似文献   

5.
The stability of a relatively hydrophobic lipase from Pseudomonas sp., solubilized in reverse micellar media or suspended in dry solvents, was studied and compared. Factors such as the enzyme-solvent interaction, enzyme environment, hydration degree of the system, interphase quality, droplet size, and water activity were studied. A mixed micellar system which stabilized the lipase is reported. In the case of simple AOT micelles, lipase destabilization with respect to water in small droplet sizes and stabilization in the biggest micelles was observed. These effects resulted from lipase penetration into the interphase of the smaller nanodroplets, and the restriction of its conformational mobility in the region of structured water of the largest micelles, respectively. Mixed micelles increased lipase stability, which was mainly related to increased droplet size. Modification with polyethylene glycol decreased lipase stability in reverse micelles, due to the greater interaction with the micellar interphase. The preparation of nanodroplets, in which native and modified lipases were 5.4 and 9.4 times, respectively, more stable than in water, is reported. In contrast to the micellar media, low water contents (low Aw values) stabilized the solid lipase suspended in organic solvent systems. Under the hydration conditions studied here, lipase stability increased when more polar solvents were used. Two alternatives were necessary to obtain similar stabilities in n-heptane as compared with polar solvents: reduction of the water content or use of a low aquaphilic support.  相似文献   

6.
The hydrolysis of olive oil catalyzed by Candida rugosa lipase in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane and the synthetic sodium bis(2-ethylhexyl polyoxyethylene)sulfosuccinate (MAOT)/isooctane reverse micellar systems was investigated in a polysulfone hollow fiber membrane reactor with recycle of the reaction mixture. Lipase was completely retained by the membrane while olive oil and oleic acid freely passed through. The retention of reverse micelles depended on W 0 (molar ratio of water to surfactant). At an olive oil concentration of 0.23 mol l–1 the final substrate conversion in the MAOT micellar system was about 1.4 times of that in the AOT micellar system.  相似文献   

7.
Hydrophilized and hydrophobized forms of the lipase from Mucor miehei were obtained by its chemical modification with cellobiose and N-succinimidyl palmitate with a modification degree of 4 in both cases. A comparative analysis of the regulation of the catalytic activities of the native and modified lipases was carried out in the system of reversed micelles of OT aerosol (AOT) in isooctane. The level of catalytic activity of all the lipase preparations in the micellar medium was found to be higher than that in aqueous solution. The chemical modification of lipase did not result in a change in the regulation of the oligomeric composition of the enzyme controlled by the degree of micelle hydration Ω0 (micelle size). The k cat dependences on Ω0 for each lipase preparation exhibit two maxima, corresponding to the functioning of lipase monomers and tetramers. The changes in the hydrophilic-lipophilic balance of the lipase surface significantly affect the character of the regulation of enzyme activity due to changes in the surfactant concentration (the number of micelles). The lipase hydrophobization results in a decrease in the enzyme activation effect with an increase in the AOT concentration in comparison with the native lipase. The lipase hydrophilization dramatically decreases the activity of lipase tetramer when the AOT concentration is increased. The catalytic activity of the monomer of hydrophilized lipase is practically independent of the AOT concentration. Kinetic data indicate a mixed type of activation of both oligomeric forms of the native and the hydrophobized lipase by AOT molecules and the noncompetitive type of the activation and AOT inhibition of the monomer and the tetramer of the hydrophilized lipase, respectively.  相似文献   

8.
The stability of lipase in AOT/isooctane reversed micellar solution was investigated. It was found that the lipase deactivated to a stable state that was not completely inactivated. The lipase residual activity after achieving the stable state in AOT/isooctane reversed micelles at 30 °C, pH 7.0, W0=8.0 was found to be 0.15, and the first-order deactivation rate coefficient of lipase at the same conditions was regressed to be 0.75 h−1. The stability of lipase was increased while oleic acid was added. Assuming the protection of oleic acid to lipase stability is due to the lipase–oleic acid complex does not decay, the kinetic model of lipase deactivation in AOT/isooctane reversed micellar solution including the influence of oleic acid was established. It was shown with the model equation that the increase in stability of the enzyme by oleic acid could be quantitatively estimated by the dissociation constant of lipase–oleic acid complex which was determined by product inhibition experiments. The model equation fit the experimental data well with an average relative deviation of 3.40%.  相似文献   

9.
Esterification reactions of lipase in reverse micelles   总被引:2,自引:0,他引:2  
The activities of lipase from Candida cylindracea and Rhizopus delemar have been investigated in water/AOT/iso-octane reverse micellar media through the use of two esterification reactions: fatty acid-alcohol esterification and glyceride synthesis. Such media promotes the occurrence of these two lipase-catalyzed reactions due to its low water content. The effect of various parameters on the activity of lipase from C. cylindracea in reverse micelles was determined and compared to results where alternate media were employed. It was observed that the structure of the media, as dictated by the type and concentration of the substrates and products and by the water/AOT ratio, w(0), had a strong impact on enzyme activity. Strong deactivation of both typase types occurred in reverse micelles, especially in the absence of substrates and for w(0) values greater than 3.0. Glyceride synthesis was realized with lipase from R. delemar, but not with that from C. cylindracea; the temperature and concentration of substrates and water strongly dictated the reaction rate and the percent conversion.  相似文献   

10.
Deactivation and conformational changes of cutinase in reverse micelles   总被引:1,自引:0,他引:1  
Deactivation data and fluorescence intensity changes were used to probe functional and structural stability of cutinase in reverse micelles. A fast deactivation of cutinase in anionic (AOT) reverse micelles occurs due to a reversible denaturation process. The deactivation and denaturation of cutinase is slower in small cationic (CTAB/1-hexanol) reverse micelles and does not occur when the size of the cationic reverse micellar water-pool is larger than cutinase. In both systems, activity loss and denaturation are coupled processes showing the same trend with time. Denaturation is probably caused by the interaction between the enzyme and the surfactant interface of the reversed micelle. When the size of the empty reversed micelle water-pool is smaller than cutinase (at W0 5, with W0 being the water:surfactant concentration ratio) a three-state model describes denaturation and deactivation with an intermediate conformational state existing on the path from native to denaturated cutinase. This intermediate was clearly detected by an increase in activity and shows only minor conformational changes relative to the native state. At W0 20, the size of the empty water-pool was larger than cutinase and the data was well described by a two-state model for both anionic and cationic reverse micelles. For AOT reverse micelles at W0 20, the intermediate state became a transient state and the deactivation and denaturation were described by a two-state model in which only native and denaturated cutinase were present. For CTAB/1-hexanol reverse micelles at W0 20, the native cutinase was in equilibrium with an intermediate state, which did not suffer denaturation. 1-Hexanol showed a stabilizing effect on cutinase in reverse micelles, contributing to the higher stabilities observed in the cationic CTAB/1-hexanol reverse micelles. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

11.
Summary Activity of lipase (candida cylindracea) in reversed micelles was found to be sustained over extended periods of time in the presence of amphiphilic substrates. Esterification of palmitic or oleic acid and octanol was studied to characterize the lipase activity in AOT/isooctane reversed micelles. Complete conversion was possible even in the presence of stoichiometric excess of water. In the absence of acyl substrates, the enzyme lost all its activity within a few hours in reversed micelles. Thermal effects on the enzyme activity were studied, and the enzyme stability in reversed micelles was compared to that in a bulk organic solvent.  相似文献   

12.
The activity and conformation of lysozyme solubilized in apolar solvents via reverse micelles was investigated. The systems used were sodium di-2-ethylhexylsulfosuccinate (AOT)/isooctane/H2O, cetyltrioctylammoniumbromide (CTAB)/CHCl3, isooctane/H2O; tetraethyleneglycoldodecylether (EO4C12)/isooctane/H2O, and bulk water. CD spectra of lysozyme in reverse micellar solutions were investigated as a function of w0 (= [H2O]/[AOT]) and were compared to the spectra in aqueous solutions. No marked changes were found in the EO4C12 or in the CTAB systems with respect to water, which indicates that no sizeable conformational changes of the enzyme occurred upon solubilization in the reverse micellar systems. In agreement with previous studies [C. Grandi, R. E. Smith, and P. L. Luisi (1981) J. Biol. Chem. 256 , 837–843] dramatic conformational changes can be inferred in the AOT system on the basis of CD studies. This is taken as an indication that the enzyme denatures in this micellar system. This is particularly striking because the enzyme is fully active in AOT reverse micelles. The apparent paradox is solved by the observation that the native CD spectrum (and by inference, the native conformation) is maintained when lysozyme is bound to NAG or NAG3, and by inference, when the substrate is bound, e.g., during enzyme turnover. However, in the absence of added NAG, NAG3, or substrate, the enzyme in the AOT reverse micellar system rapidly denatures. Together with CD studies, fluorescence and nmr data confirm the hypothesis of an irreversible denaturation of lysozyme in the AOT system, the denaturation being slowed down when the substrate is present. The activity of the enzyme has been studied as a function of pH and w0 using the chromophoric substrate 3,4-dinitrophenyl-tetra-N-acetyl-β-D -chitotetraoside (3,4-DNP-NAG4). Generally speaking, the kinetic parameters are comparable to those found in bulk water solution. More detailed, in the CTAB system, kcat tends to be smaller than in aqueous solution (with quite similar KM), whereas in the EO4C12 system (at pH 7.0) the turnover number is larger and KM is smaller than in water. In the AOT system, the kinetic parameters at pH 7.0 are also quite comparable to those found in water.  相似文献   

13.
A new nonionic reverse micellar system is developed by blending two nonionic surfactants, Triton X‐45 and Span 80. At total surfactant concentrations lower than 60 mmol/L and molar fractions of Triton X‐45 less than 0.6, thermodynamically stable reverse micelles of water content (W0) up to 30 are formed. Di(2‐ethylhexyl) phosphoric acid (HDEHP; 1–2 mmol/L) is introduced into the system for chelating transition metal ions that have binding affinity for histidine‐rich proteins. HDEHP exists in a dimeric form in organic solvents and a dimer associated with one transition metal ion, including copper, zinc, and nickel. The copper‐chelate reverse micelles (Cu‐RM) are characterized for their W0, hydrodynamic radius (Rh), and aggregation number (Nag). Similar with reverse micelles of bis‐2‐ethylhexyl sodium sulfosuccinate (AOT), Rh of the Cu‐RM is also linearly related to W0. However, Nag is determined to be 30–90 at W0 of 5–30, only quarter to half of the AOT reverse micelles. Then, selective metal‐chelate extraction of histidine‐rich protein (myoglobin) by the Cu‐RM is successfully performed with pure and mixed protein systems (myoglobin and lysozyme). The solubilized protein can be recovered by stripping with imidazole or ethylinediaminetetraacetic acid (EDTA) solution. Because various transition metal ions can be chelated to the reverse micelles, it is convinced that the system would be useful for application in protein purification as well as simultaneous isolation and refolding of recombinant histidine‐tagged proteins expressed as inclusion bodies. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
Reverse micelles are formed in apolar solvents by spontaneous aggregation of surfactants. Surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) is most often used for the reverse micellar extraction of enzymes. However, the inactivation of enzyme due to strong interaction with AOT molecules is a severe problem. To overcome this problem, the AOT/water/isooctane reverse micellar system was modified by adding short chain polyethylene glycol 400 (PEG 400). The modified AOT reverse micellar system was used to extract Mucor javanicus lipase from the aqueous phase to the reverse micellar phase. The extraction efficiency (E) increased with the increase in PEG 400 addition and the maximum E in PEG 400 modified system was twofold higher than that in the PEG 400-free system. Upon addition of PEG 400, the water activity (a(w)) of aqueous phase decreased, whereas a(w) of reverse micellar phase increased. The circular dichroism spectroscopy analysis revealed that PEG 400 changes the secondary and tertiary structure of lipase. The maximum specific activity of lipase extracted in PEG 400-modified reverse micellar system was threefold higher than that in the PEG-free system.  相似文献   

15.
Storage stability of acid phosphatase entrapped in reverse micelles was studied. Supramolecular systems were prepared with a cationic twin chain surfactant, didodecyldimethylammonium chloride (DDDAC1), n-butyl acetate as an organic solvent and different water percentages. The rate of enzyme deactivation was monitored in the temperature interval from 20 to 45?°C, at bulk pH from 4.8 to 6.4, either unstirred conditions or under convective mixing from 250 to 750 rev min?1, water-to-surfactant molar ratio (w 0) equal to 11.4, 12.7, 14.2 and with the following buffers, Na-citrate, Li-citrate, K-citrate, Na-propionate. Acid phosphatase entrapped in buffer pools of reverse micelles exhibited enhanced stability in comparison with the enzyme in the pure aqueous phase. Half-life was up to 4 times larger. Both the chemicals used for buffer preparation and buffer pH change, within one unit, were found to influence the rate of acid phosphatase deactivation. The activation energy of enzyme deactivation process in micellar systems was slightly increasing with w 0 but the values were not very different from the one in aqueous phase (145.3?kJ?mol?1). The rate of deactivation of enzyme confined in the micelles when shear stress was applied was reduced in comparison with that of the free protein, even though the percentage loss was greater.  相似文献   

16.
The enzymatic reaction by aerosol-OT (AOT)reverse micelles containing lipase in supercritical ethane was examined and is the focus of this paper. The reverse micelles were formed under various conditions at which their hydrodynamic diameters were measured by using the dynamic light scattering spectrophotometer. The reverse micelles in supercritical ethane were formed in the range of Wo (water/surfactant) less than six. The hydrodynamic diameter of the reverse micelles ranged from 2 to 5 microm. The hydrolysis reaction of triolein by the lipase in reverse micelles was also examined. The observations indicate that lipase in AOT reverse micelles in supercritical ethane showed activity. The conversion of triolein increased with the increase in size of reverse micelles and Wo, and reached its maximum near the critical temperature. Moreover, although the conversion of triolein increased with pressure, it was independent of pressure near the critical temperature.  相似文献   

17.
The enzymatic hydrolysis of olive oil using Chromobacterium viscosum lipase B encapsulated in reversed micelles of AOT in isooctane was carried out in a continous reversed micellar membrane bioreactor. A tubular ceramic membrane installed in an ultrafiltration module was used to retain the lipase and separate the products from the reaction media. Water filled micelles were supplemented to the reactor together with the substrate/solvent solution to compensate for the permeation of reversed micelles. The influence of substrate concentration, residence time and water content in the productivity and conversion of the system were investigated. A linear relationship between productivity and conversion degree was found for each substrate concentration tested. Operational stability of the bioreactor was tested in a long term operation confirming the high stability of this catalytic system.List of Symbols a(S 0 ), b(S 0 ) parameters of Eq. (3) - [AOT] mM AOT concentration - C c mM concentration in the concentrate - C p mM concentration in the permeate - E t mg total amount of lipase - [lipase] mg/cm3 overall lipase concentration - [OIL] mM olive oil concentration - [OLEIC] mM oleic acid concentration in the permeate - P mol/(min · mg) oleic acid productivity - Q in cm3/min inlet flow rate - Q out cm3/min outlet flow rate (equal to permeate flow rate) - Q r cm3/min recirculation flow rate - W o ratio of water to AOT molar concentrations - X steady state conversion degree in the permeate stream - T °C temperature - rejection coefficient  相似文献   

18.
Chromobacterium viscosum lipase, solubilized in microemulsion droplets of glycerol containing small amounts of water and stabilized by a surfactant, could catalyze the glycerolysis of triolein. Kinetic analysis of the lipase-catalyzed reaction was possible in the reversed micellar system. Among surfactants and organic solvents tested, bis(2-ethylhexyl)sodiumsulfosuccinate (AOT) and isooctane were respectively most effective, for the glycerolysis of triolein in reversed micelles. Temperature effects, pH profile, Km,app, and Vmax,app were determined. Among various chemical compounds, Fe3+, Cu2+, and Hg2+ inhibited the lipase-catalyzed glycerolysis severely. However, the glycerolysis activity was partially restorable by adding histidine or glycine to the system containing these metal ions. The glycerolysis activity was dependent on water content and maximum activity was obtained at an R value of 1.21. Higher stability of the lipase was obtained in the reversed micellar system.  相似文献   

19.
The activity of lignin peroxidase (LiP) and the partition of its optimum substrate veratryl alcohol (VA) in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/toluene/water reverse micelles were studied in this paper to understand the microheterogeneous effect of the medium on the catalytic properties of LiP hosted in the reverse micelle. Results showed that LiP from Phanerochaete chrysosporium could express its activity in the reverse micelles, but its activity depended, to a great extent, on the composition of the reverse micelles. Optimum activity occurred at a molar ratio of water to AOT (ω0) of 11, a pH value of 3.6, and a volume ratio of isooctane to toluene of 7–9. Under optimum conditions, the half-life of LiP was circa 12 h. The dependence of LiP activity on the volume fraction of water in the medium (θ), at a constant ω0 value of 11, indicated that VA was mainly solubilized in the pseudophase of the reverse micelle. Based on the pseudobiphasic model and the corresponding kinetic method, a linear line can be obtained in a plot of apparent Michaelis constant of VA vs θ, and the partition coefficient of VA between the pseudophase and the organic solvent phase was determined to be 35.8, which was higher than that (22.3) between bulk water and the corresponding mixed organic solvent. H2O2 inhibited LiP at concentrations higher than 80 μM; this concentration value seems to be different from that in aqueous solution (about 3 mM). The differences mentioned above should be ascribed to the microheterogeneity and the interface of the AOT reverse micelle.  相似文献   

20.
Abstract

The antimicrobial activity of different reverse micelles on microorganisms is been compared using the disc diffusion method. The bis (2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelle showed a more significant inhibitory effect than do other reverse. micelles, and it had an antimicrobial activity against a broad range of microorganisms. Results from an antimicrobial activity test of isooctane and a forward extraction containing soybean protein suggest that the surfactant was chiefly responsible for inhibiting microbes in AOT/isooctane reverse micelle, while isooctane hardly inhibited the microbial growth. The properties of S. aureus, cultured in the TSB with AOT reverse micellar solution, were identified by the SEM and SDS-PAGE fingerprinting of cell-wall proteins. It is concluded that the cell-wall of the S. aureus decreased in the TSB with AOT reverse micellar solution, and some cell protein subunits of the S. aureus did not occurr, especially between 14.4 and 42.7 kDa, while one new protein subunit at near 97.4 kDa occurred  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号