首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stabilization of acid phosphatase in DDDACl/n-butyl acetate reverse micelles
Authors:F Alfani  M Cantarella  D Cifoni  N Spreti  R Germani  G Savelli
Institution:Department of Chemistry, Chemical Engineering and Materials, University of L'Aquila, 67040 Monteluco di Roio AQ, Italy, IT
Department of Chemistry, University of Perugia, 60100 Perugia, Italy, IT
Abstract:Storage stability of acid phosphatase entrapped in reverse micelles was studied. Supramolecular systems were prepared with a cationic twin chain surfactant, didodecyldimethylammonium chloride (DDDAC1), n-butyl acetate as an organic solvent and different water percentages. The rate of enzyme deactivation was monitored in the temperature interval from 20 to 45?°C, at bulk pH from 4.8 to 6.4, either unstirred conditions or under convective mixing from 250 to 750 rev min?1, water-to-surfactant molar ratio (w 0) equal to 11.4, 12.7, 14.2 and with the following buffers, Na-citrate, Li-citrate, K-citrate, Na-propionate. Acid phosphatase entrapped in buffer pools of reverse micelles exhibited enhanced stability in comparison with the enzyme in the pure aqueous phase. Half-life was up to 4 times larger. Both the chemicals used for buffer preparation and buffer pH change, within one unit, were found to influence the rate of acid phosphatase deactivation. The activation energy of enzyme deactivation process in micellar systems was slightly increasing with w 0 but the values were not very different from the one in aqueous phase (145.3?kJ?mol?1). The rate of deactivation of enzyme confined in the micelles when shear stress was applied was reduced in comparison with that of the free protein, even though the percentage loss was greater.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号