首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 871 毫秒
1.
The generalist predator, Orius insidiosus (Say), is an important natural enemy of the soybean aphid, Aphis glycines Matsumura. Soybean thrips, Neohydatothrips variabilis (Beach), serve as an important prey resource for O. insidiosus in soybeans, sustaining the predator's population before the arrival of the soybean aphid. Although generalist predators can forage on a broad range of prey, they may show distinct preferences for particular prey, attacking prey at levels disproportionate to their relative numbers. To assess the preference of O. insidiosus for soybean aphid and soybean thrips, attack rates of nymphal and adult O. insidiosus were measured in the laboratory. For both adults and nymphs, the number of prey attacked increased as more prey were provided. For nymphs, the total number of prey attacked increased as the predator matured. In general, the number of prey attacked by adult predators was relatively constant as the predator aged. Both O. insidiosus nymphs and adults displayed a preference for soybean thrips, by disproportionately attacking soybean thrips over soybean aphid regardless of the relative densities of the two prey. We discuss implications of this preference on O. insidiosus life history characteristics and the potential impact on O. insidiosus-prey dynamics in the field.  相似文献   

2.
Field studies in soybeans have demonstrated that the endemic predator, Orius insidiosus (Say), is an important natural enemy of the soybean aphid, Aphis glycines Matsumura. Soybean thrips, Neohydatothrips variabilis (Beach), serve as an important prey resource for O. insidiosus in soybeans and may be important in sustaining O. insidiosus populations before the arrival of soybean aphid. Because soybean aphid is new to the US soybean system, the effects of a mixed diet of soybean aphid and soybean thrips on O. insidiosus life history is not known. We measured the survival, development, and reproduction of O. insidiosus when fed soybean thrips, and a mixed prey diet of soybean aphids and soybean thrips, and compared these results to a previous study of O. insidiosus life history fed soybean aphid alone. Nymphal development to adulthood (15.9 days) and fecundity (68.8 eggs per female) was improved for O. insidiosus fed ad libitum soybean thrips daily compared to O. insidiosus fed ad libitum soybean aphids daily. The contribution of alternative prey to O. insidiosus life history characteristics can be complex depending on the amount and quality of a particular prey item. At low levels of prey, the addition of prey appears to enhance O. insidiosus survival, development, and fecundity. However, as predators are fed more often, the predator’s response depends on the type of prey that predominates in the mixed prey diet. We discuss soybean thrips impact on O. insidiosus population ecology and soybean aphid dynamics.  相似文献   

3.
The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is a pest of soybeans in Asia, and in recent years has caused extensive damage to soybeans in North America. Within these agroecosystems, generalist predators form an important component of the assemblage of natural enemies, and can exert significant pressure on prey populations. These food webs are complex and molecular gut-content analyses offer nondisruptive approaches for examining trophic linkages in the field. We describe the development of a molecular detection system to examine the feeding behaviour of Orius insidiosus (Hemiptera: Anthocoridae) upon soybean aphids, an alternative prey item, Neohydatothrips variabilis (Thysanoptera: Thripidae), and an intraguild prey species, Harmonia axyridis (Coleoptera: Coccinellidae). Specific primer pairs were designed to target prey and were used to examine key trophic connections within this soybean food web. In total, 32% of O. insidiosus were found to have preyed upon A. glycines, but disproportionately high consumption occurred early in the season, when aphid densities were low. The intensity of early season predation indicates that O. insidiosus are important biological control agents of A. glycines, although data suggest that N. variabilis constitute a significant proportion of the diet of these generalist predators. No Orius were found to contain DNA of H. axyridis, suggesting intraguild predation upon these important late-season predators during 2005 was low. In their entirety, these results implicate O. insidiosus as a valuable natural enemy of A. glycines in this soybean agroecosystem.  相似文献   

4.
The generalist predator, Orius insidiosus (Say) is an important early-season predator of the soybean aphid, Aphis glycines Matsumura, a newly invasive pest of major concern in soybean crop management. We conducted a 3 year, multiple field study to characterize the dynamic relationships between the predator, the pest, and alternative prey in soybean. Using field sampling data, we showed that thrips were the only alternative prey to be well-established in fields prior to O. insidiosus arrival and were likely to promote predator colonization of soybean fields prior to the arrival of soybean aphid. The predator displayed a reproductive numerical response to thrips in one of the 3 years and a primarily aggregative response in another year. The predator did not respond numerically to soybean aphid in the majority of fields. Experimental manipulations of thrips populations in field plots temporarily reduced thrips densities but had a minimal effect on O. insidiosus densities, suggesting that the predator is resilient against temporary reductions in a major resource. In the 2 years O. insidiosus populations were well-established in fields prior to soybean aphid arrival, soybean aphid remained at low levels throughout the season. In the year soybean aphid arrived early with respect to the growing season and before O. insidiosus populations were established, soybean aphid reached outbreak levels in all fields. Future research efforts on the factors determining soybean aphid population dynamics need to address the relative importance of early-season soybean aphid colonization and generalist predator population dynamics on the potential for soybean aphid population outbreaks.  相似文献   

5.
Generalist predators are often used in biological control programs, although they can be detrimental for pest control through interference with other natural enemies. Here, we assess the effects of generalist natural enemies on the control of two major pest species in sweet pepper: the green peach aphid Myzus persicae (Sulzer) and the western flower thrips Frankliniella occidentalis (Pergande). In greenhouses, two commonly used specialist natural enemies of aphids, the parasitoid Aphidius colemani Viereck and the predatory midge Aphidoletes aphidimyza (Rondani), were released together with either Neoseiulus cucumeris Oudemans, a predator of thrips and a hyperpredator of A. aphidimyza, or Orius majusculus (Reuter), a predator of thrips and aphids and intraguild predator of both specialist natural enemies. The combined use of O. majusculus, predatory midges and parasitoids clearly enhanced the suppression of aphids and consequently decreased the number of honeydew-contaminated fruits. Although intraguild predation by O. majusculus on predatory midges and parasitoids will have affected control of aphids negatively, this was apparently offset by the consumption of aphids by O. majusculus. In contrast, the hyperpredator N. cucumeris does not prey upon aphids, but seemed to release aphids from control by consuming eggs of the midge. Both N. cucumeris and O. majusculus did not affect rates of aphid parasitism by A. colemani. Thrips were also controlled effectively by O. majusculus. A laboratory experiment showed that adult predatory bugs feed on thrips as well as aphids and have no clear preference. Thus, the presence of thrips probably promoted the establishment of the predatory bugs and thereby the control of aphids. Our study shows that intraguild predation, which is potentially negative for biological control, may be more than compensated by positive effects of generalist predators, such as the control of multiple pests, and the establishment of natural enemies prior to pest invasions. Future work on biological control should focus on the impact of species interactions in communities of herbivorous arthropods and their enemies.  相似文献   

6.
Many organisms possess chemical defences against their natural enemies, which render them unpalatable or toxic when attacked or consumed. These chemically‐defended organisms commonly occur in communities with non‐ or less‐defended prey, leading to indirect interactions between prey species, mediated by natural enemies. Although the importance of enemy‐mediated indirect interactions have been well documented (e.g. apparent competition), how the presence of prey chemical defences may affect predation of non‐defended prey in terrestrial communities remains unclear. Here, an experimental approach was used to study the predator‐mediated indirect interaction between a chemically‐defended and non‐defended pest aphid species. Using laboratory‐based mesocosms, aphid community composition was manipulated to include chemically‐defended (CD) aphids Brevicoryne brassicae, non‐defended (ND) aphids Myzus persicae or a mixed assemblage of both species, on Brassica oleracea cabbage plants, in the presence or absence of a shared predator (Chrysoperla carnea larvae). Aphid population growth rates, aphid distributions on host plants and predator growth rates were measured. In single‐species treatments, C. carnea reduced M. persicae population growth rate, but had no significant impact on B. brassicae population growth rate, suggesting B. brassicae chemical defences are effective against C. carnea. Chrysoperla carnea had no significant impact on either aphid species population growth rate in mixed‐species treatments. Myzus persicae (ND) therefore experienced reduced predation in the presence of B. brassicae (CD) through a predator‐mediated indirect effect. Moreover, predator growth rates were significantly higher in the M. persicae‐only treatments than in either the B. brassicae‐only or mixed‐species treatments, suggesting predation was impaired in the presence of B. brassicae (CD). A trait‐mediated indirect interaction is proposed, consistent with associational resistance, in which the predator, upon incidental consumption of chemically‐defended aphids is deterred from feeding, releasing non‐defended aphids from predatory control.  相似文献   

7.
1. The effects of predator species, aphid density, aphid age, diel period, and habitat complexity on the dropping behaviour of the pea aphid Acyrthosiphon pisum were assessed in a series of laboratory and field-cage experiments.
2. The presence of foliar-foraging predators significantly increased the proportion of aphids that dropped from alfalfa plants. In the absence of predators, less than 7% of the aphids dropped. Dropping more than doubled (14%) when one of three hemipteran predators , N. americoferus, G. punctipes or O. insidiosus , was present. Nearly 60% of the aphids dropped when the ladybird beetle, Coccinella septempunctata , was present.
3. Adult aphids showed a significantly higher propensity to drop than immature aphids, regardless of the presence or absence of predators. Aphid density had no effect on dropping behaviour.
4. Neither diel period nor habitat complexity had an effect on aphid dropping behaviour. Aphids were significantly more likely to drop in the presence of predators during either the day or night and from either early or late regrowth alfalfa.
5. A review of the factors affecting dropping behaviour, including those elucidated in this study, indicates that the propensity to drop from a plant is influenced by three factors: the risk of predation on the plant, the quality of the resource to be abandoned, and the risk of mortality in the new microhabitat.  相似文献   

8.
1. Studies of the impact of predator diversity on biological pest control have shown idiosyncratic results. This is often assumed to be as a result of differences among systems in the importance of predator–predator interactions such as facilitation and intraguild predation. The frequency of such interactions may be altered by prey availability and structural complexity. A direct assessment of interactions among predators is needed for a better understanding of the mechanisms affecting prey abundance by complex predator communities. 2. In a field cage experiment, the effect of increased predator diversity (single species vs. three‐species assemblage) and the presence of weeds (providing structural complexity) on the biological control of cereal aphids were tested and the mechanisms involved were investigated using molecular gut content analysis. 3. The impact of the three‐predator species assemblages of aphid populations was found to be similar to those of the single‐predator species treatments, and the presence or absence of weeds did not alter the patterns observed. This suggests that both predator facilitation and intraguild predation were absent or weak in this system, or that these interactions had counteracting effects on prey suppression. Molecular gut content analysis of predators provided little evidence for the latter hypothesis: predator facilitation was not detected and intraguild predation occurred at a low frequency. 4. The present study suggests additive effects of predators and, therefore, that predator diversity per se neither strengthens nor weakens the biological control of aphids in this system.  相似文献   

9.
The combined release of species of generalist predators can enhance multiple pest control when the predators feed on different prey, but, in theory, predators may be excluded through predation on each other. This study evaluated the co-occurrence of the generalist predators Macrolophus pygmaeus Rambur and Orius laevigatus (Fieber) and their control of two pests in a sweet pepper crop. Both predators consume pollen and nectar in sweet pepper flowers, prey on thrips and aphids, and O. laevigatus is an intraguild predator of M. pygmaeus. Observations in a commercial sweet pepper crop in a greenhouse with low densities of pests showed that the two predator species coexisted for 8 months. Moreover, their distributions in flowers suggested that they were neither attracted to each other, nor avoided or excluded each other. A greenhouse experiment showed that the predators together clearly controlled thrips and aphids better than each of them separately. Thrips control was significantly better in the presence of O. laevigatus and aphid control was significantly better in the presence of M. pygmaeus. Hence, combined inoculative releases of M. pygmaeus and O. laevigatus seem to be a good solution for controlling both thrips and aphids in greenhouse-grown sweet pepper. The predators are able to persist in one crop for a sufficiently long period and they complement each other in the control of both pests. This study also provides further evidence that intraguild predation does not necessarily have negative effects on biological control.  相似文献   

10.
The soybean aphid, Aphis glycines Matsumura, was introduced to north central North America from Asia in 2000, and it has become a major pest of soybean, Glycine max (L.) Merr. Understanding how natural enemies impact aphid populations in the field is an important component in developing a comprehensive management plan. We examined the impact of naturally occurring predators in the field by using exclusion cages during July-August 2004 and 2005. Field cages of different mesh diameters were used to exclude different sizes of natural enemies from aphid-infested plots. Plots were surveyed twice weekly for A. glycines and natural enemies. Densities were recorded. Cage effects on mean temperature and soybean growth were found to be insignificant. Significant differences in aphid density were found between treatments in both years of the study (2004 and 2005); however, aphid densities between years were highly variable. Orius insidiosus (Say) was the most commonly occurring predator in the field. Other natural enemies were present in both years but not in high numbers. Parasitoids were present in both years, but their numbers did not suppress aphid densities. Treatment differences within years were related to the abundance of natural enemies. The large differences in aphid abundance between years were associated with the higher number of O. insidiosus found in the field in 2005 (416 total O. insidiosus) than in 2004 (149 total O. insidiosus). This study suggests that naturally occurring predators, primarily O. insidiosus, can have a large impact on A. glycines populations when predator populations are established before initial A. glycines colonization.  相似文献   

11.
Orius insidiosus (Say) and O. pumilio (Champion) were confirmed to be sympatric in north central Florida as the major predators of the Florida flower thrips, Frankliniella bispinosa (Morgan), on flowers of Queen Anne's lace, Daucus carota L. and false Queen Anne's lace, Ammi majus L. F. bispinosa was the predominant thrips observed on both flowers but colonized D. carota to a greater extent and earlier in the season than A. majus. Despite differences in the abundance of F. bispinosa on the two plants, neither Orius species showed host plant affinities. Population profiles for the thrips and Orius spp. followed a density dependent response of prey to predator with a large initial prey population followed by a rapid decline as the predator populations increased. The temporal increases in Orius spp. populations during the flowering season suggest that they were based on reproductive activity. As observed in a previous study, O. insidiosus had a larger population than O. pumilio and also had a predominantly male population on the flowers. By examining carcasses of the prey, there appeared to be no sexual preference of the thrips as prey by the Orius spp. as the prey pattern followed the demographics of the thrips sex ratio. Few immatures of either thrips or Orius spp. were observed on D. carota or A. majus, which suggests that oviposition and nymphal development occurred elsewhere. Based on these findings, D. carota and A. majus could serve as a banker plant system for Orius spp.  相似文献   

12.
The magnitude of intraguild predation by adult females of the predator Anthocoris nemorum on immature larvae of the aphid parasitoid Aphidius colemani inside mummies of peach-potato aphids Myzus persicae was investigated under laboratory conditions in a preference experiment. Each predator consumed a mean (95% confidence limits) of 2.8 (2.1; 3.8) immature parasitoids within mummies and 3.6 (2.7; 4.6) unparasitised aphid nymphs. Thereby A. nemorum engaged in intraguild predation with A. colemani and did not exhibit prey preference between mummies and unparasitised aphids.  相似文献   

13.
In most studies of tritrophic interactions, the effect of plants on predators is confounded with changes in prey and predator behaviors after an encounter event. Here, we estimate how the effect of plants on prey distribution (in the absence of the predator) and on predator foraging behavior (in the absence of prey) may influence predation rate of Orius insidiosus (Say) (Heteroptera: Anthocoridae) in 11 plant by prey species combinations. The within-leaf distributions of O. insidiosus and its prey overlapped most on bean plants. The predator's foraging behavior (e.g., walking speed, turning rate) also differed among plant species. Simulations, using the prey distribution data and predator's foraging patterns on leaf surfaces of each plant species, show that, overall, the searching efficiency of O. insidiosus was higher on leaves of bean and corn than of tomato. However, the predator's searching efficiency was not consistent within plant species. Thus, the combined effect of plants directly on the predator and indirectly through the prey influenced the predator's searching efficiency.  相似文献   

14.
We investigated the potential for indirect interactions between two prey species, pea aphids ( Acyrthosiphon pisum ) and potato leafhoppers ( Empoasca fabae ), through a shared predator (Nabis spp.), and how these interactions may change across three spatial scales. In greenhouse experiments using small clusters of plants containing pea aphids and/or potato leafhoppers, the predation rates on both pea aphids and potato leafhoppers were independent of the presence of the other species, indicating no indirect interactions. In greenhouse experiments using cages containing 48 plants, when aphids and leafhoppers were confined to separate plants among which nabids could move, pea aphids had a positive effect on the survival of potato leafhoppers from predation. The positive effect of aphids on leafhoppers occurred because nabids spent more time on plants harboring aphids, thereby drawing nabids away from plants containing leafhoppers. Finally, we measured the abundance of nabids in a large-scale experiment designed to manipulate the abundances of pea aphids and potato leafhoppers in alfalfa fields. Fields with high aphid density contained more nabids, thereby suggesting that pea aphids will have a negative indirect effect on potato leafhoppers by increasing the density of nabids within fields. Potato leafhoppers had no indirect effects on pea aphids at any scale. This study shows that indirect interactions between prey species may depend upon spatial scale, because the factors affecting a predator's diet choice on a small scale may differ from those factors affecting a predator's distribution at larger scales.  相似文献   

15.
A growing body of research has examined the effect of shared resource density on intraguild predation (IGP) over relatively short time frames. Most of this work has led to the conclusion that when the shared resource density is high, the strength of IGP should be lower, due to prey dilution. However, experiments addressing this topic have been done using micro- or mesocosms that excluded the possibility of intraguild predator aggregation. We examined the effect of shared resource density on IGP of an aphid parasitoid in an open field setting where the effects of prey dilution and predator aggregation could occur simultaneously. We brought potted soybean plants with 2, 20, or 200 soybean aphids (Aphis glycines) and 20 pupae (‘mummies’) of the soybean aphid parasitoid Binodoxys communis into soybean fields in Minnesota, USA. We monitored predator aggregation onto the potted plants, predation of parasitoid mummies, and successful adult emergence of B. communis. We found that predator aggregation was higher at the higher aphid densities on our experimental plants and that this coincided with lower adult emergence of B. communis, indicating that even if a prey dilution effect occurred in our study, it was overcome by short-term predator aggregation. Our results suggest that the effect of shared resource density on IGP may be more nuanced in a field setting than in microcosms due to predator aggregation.  相似文献   

16.
1. In order to understand the relative importance of prey quality and mobility in indirect interactions among alternative prey that are mediated by a shared natural enemy, the nutritional quality of two common prey for a generalist insect predator along with the predator's relative preference for these prey was determined. 2. Eggs of the corn earworm Helicoverpa zea (Lepidoptera: Noctuidae) were nutritionally superior to pea aphids Acyrthosiphum pisum (Homoptera: Aphididae) as prey for big‐eyed bugs Geocoris punctipes (Heteroptera: Geocoridae). Big‐eyed bugs survived four times as long when fed corn earworm eggs than when fed pea aphids. Furthermore, only big‐eyed bugs fed corn earworm eggs completed development and reached adulthood. 3. In two separate choice experiments, however, big‐eyed bugs consistently attacked the nutritionally inferior prey, pea aphids, more frequently than the nutritionally superior prey, corn earworm eggs. 4. Prey mobility, not prey nutritional quality, seems to be the most important criterion used by big‐eyed bugs to select prey. Big‐eyed bugs attacked mobile aphids preferentially when given a choice between mobile and immobilised aphids. 5. Prey behaviour also mediated indirect interactions between these two prey species. The presence of mobile pea aphids as alternative prey benefited corn earworms indirectly by reducing the consumption of corn earworm eggs by big‐eyed bugs. The presence of immobilised pea aphids, however, did not benefit corn earworms indirectly because the consumption of corn earworm eggs by big‐eyed bugs was not reduced when they were present. 6. These results suggest that the prey preferences of generalist insect predators mediate indirect interactions among prey species and ultimately affect the population dynamics of the predator and prey species. Understanding the prey preferences of generalist insect predators is essential to predict accurately the efficacy of these insects as biological control agents.  相似文献   

17.
Kunert G  Weisser WW 《Oecologia》2003,135(2):304-312
Natural enemies not only influence prey density but they can also cause the modification of traits in their victims. While such non-lethal effects can be very important for the dynamic and structure of prey populations, little is known about their interaction with the density-mediated effects of natural enemies. We investigated the relationship between predation rate, prey density and trait modification in two aphid-aphid predator interactions. Pea aphids (Acyrthosiphon pisum, Harris) have been shown to produce winged dispersal morphs in response to the presence of ladybirds or parasitoid natural enemies. This trait modification influences the ability of aphids to disperse and to colonise new habitats, and hence has a bearing on the population dynamics of the prey. In two experiments we examined wing induction in pea aphids as a function of the rate of predation when hoverfly larvae (Episyrphus balteatus) and lacewing larvae (Chrysoperla carnea) were allowed to forage in pea aphid colonies. Both hoverfly and lacewing larvae caused a significant increase in the percentage of winged morphs among offspring compared to control treatments, emphasising that wing induction in the presence of natural enemies is a general response in pea aphids. The percentage of winged offspring was, however, dependent on the rate of predation, with a small effect of predation on aphid wing induction at very high and very low predation rates, and a strong response of aphids at medium predation rates. Aphid wing induction was influenced by the interplay between predation rate and the resultant prey density. Our results suggests that density-mediated and trait-mediated effects of natural enemies are closely connected to each other and jointly determine the effect of natural enemies on prey population dynamics.  相似文献   

18.
1. Trophic interactions between predators and parasitoids can be described as intraguild predation (IGP) and are often asymmetric. Parasitoids (typically the IG prey) may respond to the threat of IGP by mitigating the predation risk for their offspring. 2. We used a system with a facultative predator Macrolophus caliginosus, the parasitoid Aphidius colemani, and their shared prey, the aphid Myzus persicae. We examined the functional responses of the parasitoid in the presence/absence of the predator on two host plants (aubergine and sweet pepper) with differing IGP risk. 3. Estimated model parameters such as parasitoid handling time increased on both plants where the predator was present, but impact of the predator varied with plant species. The predator, which could feed herbivorously on aubergine, had a reduced impact on parasitoid foraging on that plant. IG predator presence could reduce the searching effort of the IG prey depending on the plant, and on likely predation risk. 4. The results are discussed with regard to individual parasitoid's foraging behaviour and population stability; it is suggested that the presence of the predator can contribute to the stabilisation of host–parasitoid dynamics  相似文献   

19.
Abstract:  The predatory effect of adult ladybird Coccinella septempunctata L. on adults of thrips, Thrips tabaci Lindeman, and whiteflies, Trialeurodes vaporariorum (Westwood), was examined in controlled environment chambers, on tomato leaves, in transparent small plastic cages at proportions of 1/(10 + 10), 1/(20 + 20), 1/(30 + 30) and 1/(40 + 40) predator/number of thrips and whiteflies. We conclude that C. septempunctata could be used with success for the biological control of thrips and whiteflies in greenhouse crops, with almost the same effectiveness as for aphids, at predator/prey proportions near 1 : 30. Additionally, it was found a prey preference for T. tabaci in comparison with T. vaporariorum . According to the model used, effective predation is correlated with predator/prey ratio rather than to prey preference.  相似文献   

20.
Parameters determining the functional and numerical response of Orius insidiosus to the density of second instar larvae of the western flower thrips (WFT), Frankliniella occidentalis, were estimated with the aim to be used in models calculating adequate release ratios of predators vs prey. Especially when the prey population must decrease immediately after predator release and the time to suppression must be short, it is of crucial importance to know whether the functional response reaches a plateau or keeps on increasing with prey density within the range of densities that are realistic for the prey. Such plateaus may arise from constraints on the time budget or from constraints on gut-fullness-associated motivation to attack the prey. Estimates of the plateau for O. insidiosus based on prey handling times by far exceed realistic values. In addition, motivation constraints did not apply, because the level of gut fullness above which attack ceases coincides with gut capacity. This implies that the predation rate keeps on increasing linearly with the square root of the density of WFT-larvae and does not reach a plateau within the realistic range of thrips densities (0–20 WFT per cm2). Such plateaus are likely to occur for smaller-sized predators and smaller-sized stages of the same predator and they may also occur when the prey stage offered has better capacities to escape or resist attack. We argue that the presence and level of plateaus in functional responses are of importance for determining initial predator-to-prey ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号