首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
Intraguild predation (IGP) occurs when consumers competing for a resource also engage in predatory interactions. A common type of IGP involves aphid predators and parasitoids: since parasitoid offspring develop within aphid hosts, they are particularly vulnerable to predation by aphid predators such as coccinellid beetles. Other intraguild interactions that include non-lethal behavioral effects, such as interference with foraging and avoidance of IGP, may also hamper parasitoid activity and reduce their effectiveness as biological control agents. In this study, we quantified mortality in and behavioral effects on Aphidius colemani Viereck (Hymenoptera: Aphidiidae) by its IG-predator Coccinella undecimpunctata L. (Coleoptera: Coccinellidae), and compared the impact of two release ratios of these natural enemies on aphid populations. Parasitoids did not leave the plant onto which they were first introduced, regardless of the presence of predators, even when alternative prey was offered on predator-free plants nearby. In 2-hour experiments, predator larvae interfered with wasp activity, and the level of aphid parasitism was lower in the presence of predators than in their absence. In these experiments, the parasitoids contributed more to aphid mortality than the predators and aphid suppression was higher when a parasitoid acted alone than in combination with a predator larva. These results were confirmed in a 5-day experiment, but only at one parasitoid:predator release ratio (4:3) not another (2:3). The over-all impact on aphid population growth was non-the-less stronger when both enemies acted together than when only one of them was present. Results indicate that for given release ratios and time scale, the negative lethal and non-lethal effects of the predator on parasitoid performance did not fully cancelled the direct impact of the predator on the aphid population.  相似文献   

2.
Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.  相似文献   

3.
Jenkins GP  King D 《Oecologia》2006,147(4):641-649
Intraguild predation (IGP) is common in most communities, but many aspects of density-dependent interactions of IG predators with IG prey are poorly resolved. Here, we examine how the density of an IG predator can affect feeding group size, IG egg predation, and the growth responses of IG prey. We used laboratory feeding trials and outdoor mesocosm experiments to study interactions between a social intraguild predator (larvae of the wood frog; Rana sylvatica) and its prey (spotted salamander; Ambystoma maculatum). Larvae of R. sylvatica could potentially affect A. maculatum by consuming shared larval food resources or by consuming eggs and hatchlings. However, successful egg predation requires group feeding by schooling tadpoles. We established from five to 1,190 hatchlings of R. sylvatica in mesocosms, then added either 20 A. maculatum hatchlings to study interspecific competition, or a single egg mass to examine IGP. Crowding strongly suppressed the growth of R. sylvatica, and IGP was restricted to the egg stage. In the larval competition experiment, growth of A. maculatum was inversely proportional to R. sylvatica density. In the predation experiment, embryonic mortality of A. maculatum was directly proportional to the initial density of R. sylvatica and the mean number of tadpoles foraging on egg masses. IGP on eggs reduced A. maculatum hatchling density, which accelerated larval growth. Surprisingly, the density of R. sylvatica had no overall effect on A. maculatum growth because release from intraspecific competition via egg predation was balanced by increased interspecific competition. Our results demonstrate that the density of a social IG predator can strongly influence the nature and intensity of interactions with a second guild member by simultaneously altering the intensity of IGP and intra- and interspecific competition.L . A. Burley and A. T. Moyer contributed equally to this work.  相似文献   

4.
Although ecological theory exists to predict dynamics in communities with intraguild predation (IGP), few empirical tests have examined this theory. IGP theory, in particular, predicts that when two competitors interact via IGP, with increasing resource productivity: (1) the IG predator will increase in abundance as the IG prey declines, and (2) increasing dominance of the IG predator will cause resource density to increase. Here, we provide a first test of these predictions in a field community consisting of a scale insect and its two specialist parasitoids, Aphytis melinus (the IG predator) and Encarsia perniciosi (the IG prey). The shared resource, California red scale, is a pest of citrus, and its productivity varies across a threefold range among citrus cultivars. We examined both absolute and relative densities of parasitoids along this natural gradient of scale productivity in three citrus cultivars (orange, grapefruit and lemon). Although both parasitoid species were found in all three cultivars, their abundances reflected those predicted by IGP theory: the IG prey species dominated at low productivity and the IG predator dominated at high productivity. This relationship was caused by an increase in Aphytis density with productivity. In addition, the density of scale increased with the dominance of the IG predator. These results from a field system demonstrate the important dynamic outcomes for food webs with IGP.  相似文献   

5.
Arthropods often engage in complex trophic interactions such as intraguild predation (IGP), true omnivory (i.e., feeding on plants and prey), and apparent competition. Theoretical treatments of the effects of such interactions on herbivore populations have been concerned almost entirely with equilibrium conditions. Yet these interactions are common in non-equilibrium settings such as agroecosystems, where they are likely to have a strong influence on pest populations. We therefore tested short-term effects of IGP and food supplementation on interactions between two predators (the phytoseiid mite Neoseiulus cucumeris and the anthocorid bug Orius laevigatus) and their shared prey, Frankliniella occidentalis, on strawberry plants. All three consumers feed on strawberry pollen, both mites and bugs prey on thrips, and the bug also feeds on the mites (IGP). Strong IGP on mites (IG prey) by the bugs (IG predator) was recorded in structurally-simple arenas. In a more complex setting (whole-plants), however, the intensity of IGP differed among plant structures. Likewise, pollen supplementation reduced both IGP and predation on thrips in a structurally simple setting. In the whole-plant experiment, IGP was more intense on pollen-bearing than pollen-free flowers. The study illustrated how spatial dynamics, generated when consumers track food sources differently in the habitat and possibly when herbivorous and IG prey alter their distribution to escape predation, led to site-specific configuration of interacting populations. The intensity of resulting trophic interactions was weakened by food supplementation and by increased complexity of the habitat.  相似文献   

6.
Predator species with the same prey interact not only by competition for food and space but also by intraguild predation (IGP). The impact of IGP on introduced phytoseiid mites and native species in the context of biological control is a matter of considerable debate. Amblyseius eharai is the dominant native citrus species in central China, while Amblyseius cucumeris and Amblyseius barkeri are candidates for importation. All three species can feed on the spider mite Panonychus citri, which is the main pest in citrus. This study investigated, in the laboratory, possible IGP among these species in the absence and presence of P. citri, respectively. IGP in different densities of shared prey and intraguild (IG) prey was also studied. All three species consumed heterospecific larvae and eggs but not adults, and the IGP rate of larvae was significantly higher than that of eggs in the absence of shared prey. Additionally, the IGP rate of each group was reduced dramatically in the presence of both shared and IG prey when compared to the absence of shared prey. This occurs most likely because the three species prefer to feed on their natural prey P. citri, rather than on IG prey. Our results showed that A. eharai seems to be a more voracious IG predator than A. cucumeris. A. eharai was much more prone to IGP than A. barkeri.  相似文献   

7.
The probability of individuals being targeted as prey often decreases as they grow in size. Such size‐dependent predation risk is very common in systems with intraguild predation (IGP), i.e. when predatory species interact through predation and competition. Theory on IGP predicts that community composition depends on productivity. When recently testing this prediction using a terrestrial experimental system consisting of two phytoseiid mite species, Iphiseius degenerans as the IG‐predator and Neoseiulus cucumeris as the IG‐prey, and pollen (Typha latifolia) as the shared resource, we could not find the predicted community shift. Instead, we observed that IG‐prey excluded IG‐predators when the initial IG‐prey/IG‐predator ratio was high, whereas the opposite held when the initial ratio was low, which is also not predicted by theory. We therefore hypothesized that the existence of vulnerable and invulnerable stages in the two populations could be an important driver of the community composition. To test this, we first demonstrate that IG‐prey adults indeed attacked IG‐predator juveniles in the presence of the shared resource. Second, we show that the invasion capacity of IG‐predators at high productivity levels indeed depended on the structure of resident IG‐prey populations. Third, we further confirmed our hypothesis by mimicking successive invasion events of IG‐predators into an established population of IG‐prey at high productivity levels, which consistently failed. Our results show that the interplay between stage structure of populations and reciprocal intraguild predation is decisive at determining the species composition of communities with intraguild predation.  相似文献   

8.
Based on the hypothesis that matching diets of intraguild (IG) predator and prey indicate strong food competition and thus intensify intraguild predation (IGP) as compared to non‐matching diets, we scrutinized diet‐dependent mutual IGP between the predatory mites Neoseiulus cucumeris and N. californicus. Both are natural enemies of herbivorous mites and insects and used in biological control of spider mites and thrips in various agricultural crops. Both are generalist predators that may also feed on plant‐derived substances such as pollen. Irrespective of diet (pollen or spider mites), N. cucumeris females had higher predation and oviposition rates and shorter attack latencies on IG prey than N. californicus. Predation rates on larvae were unaffected by diet but larvae from pollen‐fed mothers were a more profitable prey than those from spider‐mite fed mothers resulting in higher oviposition rates of IG predator females. Pollen‐fed protonymphs were earlier attacked by IG predator females than spider‐mite fed protonymphs. Spider mite‐fed N. californicus females attacked protonymphs earlier than did pollen‐fed N. californicus females. Overall, our study suggests that predator and prey diet may exert subtle influences on mutual IGP between bio‐control agents. Matching diets did not intensify IGP between N. californicus and N. cucumeris but predator and prey diets proximately influenced IGP through changes in behaviour and/or stoichiometry.  相似文献   

9.
Intraguild predation (IGP) can be an important factor influencing the effective- ness of aphid natural enemies in biological control. In particular, aphid parasitoid foraging could be influenced by the presence of predators. This study investigated the effect of larvae of the predatory hoverfly Episyrphus balteatus DeGeer (Diptera: Syrphidae) and the multicolored Asian ladybird Harmonia axyridis Pallas (Coleoptera: Coccinellidae) on the foraging behavior of the aphid parasitoid, Aphidius ervi Haliday (Hymenoptera: Aphidiidae) in choice experiments using a leaf disc bioassay. Wasp response to chemical tracks left by those predator larvae was also tested. Parasitoid behavior was recorded using the Observer (Noldus Information Technology, version 5.0, Wageningen, the Netherlands). The experiments were conducted under controlled environmental conditions using leaves of the broad bean plant, Viciafaba L. (Fabaceae) with Myzus persicae Sulzer (Homoptera: Aphididae) as the host complex. A. ervi females avoided aphid patches when larvae of either predator were present. A similar avoidance response was shown by A. ervi to aphid patches with E. balteatus larval tracks, whereas no significant response was observed to tracks left by H. axyridis larvae. It was concluded that IG predator avoidance shown by the aphid parasitoid A. ervi may be a factor affecting their distribution among host patches.  相似文献   

10.
Two exotic phytoseiid mites, Neoseiulus cucumeris and Amblyseius swirskii, are commercially available in Japan for the control of thrips and other pest insects. As part of a risk assessment of the non-target effects of releasing these two species, we investigated intraguild predation (IGP) between these exotic phytoseiid mites and an indigenous phytoseiid mite Gynaeseius liturivorus, which is promising as an indigenous natural enemy for the control of thrips in Japan. To understand IGP relations between the exotic and indigenous phytoseiid mites after use of the exotic mites for biological control, we investigated IGP between them in the absence of their shared prey. When an IG prey was offered to an IG predator, both exotic and indigenous females consumed the IG prey at all immature stages (egg, larva, protonymph, deutonymph), especially at its larval stages. The propensity for IGP in a no-choice test was measured by the survival time of IG prey corrected using the survival time of thrips offered to the IG predator. There was no significant difference in the propensity for IGP between N. cucumeris and G. liturivorus, but the propensity was significantly higher in A. swirskii than G. liturivorus. The propensity for IGP in a choice test was measured by the prey choice of the IG predator when a conspecific and a heterospecific larva were offered simultaneously as IG prey. Both exotic females consumed the heterospecific larva only. The indigenous female preferentially consumed the heterospecific larva when the heterospecific larva was N. cucumeris, but consumed the conspecific larva when the heterospecific larva was A. swirskii. We concluded that further investigation would be necessary for the exotic mites’ risk assessment, since the propensity for IGP of the two exotic females was similar to or higher than that of the indigenous female in both the no-choice and choice tests.  相似文献   

11.
A growing body of research has examined the effect of shared resource density on intraguild predation (IGP) over relatively short time frames. Most of this work has led to the conclusion that when the shared resource density is high, the strength of IGP should be lower, due to prey dilution. However, experiments addressing this topic have been done using micro- or mesocosms that excluded the possibility of intraguild predator aggregation. We examined the effect of shared resource density on IGP of an aphid parasitoid in an open field setting where the effects of prey dilution and predator aggregation could occur simultaneously. We brought potted soybean plants with 2, 20, or 200 soybean aphids (Aphis glycines) and 20 pupae (‘mummies’) of the soybean aphid parasitoid Binodoxys communis into soybean fields in Minnesota, USA. We monitored predator aggregation onto the potted plants, predation of parasitoid mummies, and successful adult emergence of B. communis. We found that predator aggregation was higher at the higher aphid densities on our experimental plants and that this coincided with lower adult emergence of B. communis, indicating that even if a prey dilution effect occurred in our study, it was overcome by short-term predator aggregation. Our results suggest that the effect of shared resource density on IGP may be more nuanced in a field setting than in microcosms due to predator aggregation.  相似文献   

12.
Intraguild predation (IGP) occurs when one species preys on a competitor species that shares a common resource. Modifying a prey–predator model with prey infection, we propose a model of IG interactions among host, parasitoid, and predator, in which the predator eats parasitized and unparasitized hosts, and the adult parasitoid density is explicitly expressed. Parameter dependences of community structure, including stability of the system, were analytically obtained. Depending on interaction strength (parasitization and predation on unparasitized and parasitized hosts), the model provides six types of community structure: (1) only the host exists, (2) the host and predator coexist stably, (3) the host and parasitoid coexist stably, (4) the host–parasitoid population dynamics are unstable, (5) the three species coexist stably, and (6) the population dynamics of the three species are unstable. In contrast to a traditional prey–predator model with prey infection, which predicts that population dynamics are always locally stable, our model predicts that they are unstable when the parasitization rate is high.  相似文献   

13.
Intraguild predation (IGP) among predatory species can influence many plant-arthropod associations. However, the relevance of IGP is poorly understood for truly omnivorous species such as those that can complete development on both animal and plant diets. Here we test the hypothesis that IGP among two omnivorous mirids is more common when extraguild food is either absent or not suitable. Laboratory experiments were performed in experimental cages in order to determine the effect of intraguild prey densities and diet availability on direction and intensity of IGP between Dicyphus tamaninii and Macrolophus caliginosus (Heteroptera: Miridae). Intraguild predation was symmetrical between the two mirid species in the absence of alternative food. Increasing densities of intraguild prey enhanced drastically the incidence of IGP. Intraguild predation was reduced when mirids were in the presence of green or red tomato fruits, but the presence of any other extraguild resources had no impact on IGP level. However, when given before the experiments, all resources with the exception of tomato leaves significantly reduced IGP. A second experiment was performed on live plants to compare the results of the previous trials with that obtained in a more natural setting. No IGP was observed when both mirid species were present on a plant. However, development of the intraguild prey (the more vulnerable stage) was hindered by the presence of the intraguild predator. The potential of such results is discussed from community ecology and biological control perspective.  相似文献   

14.
It is well recognised that interactions among multiple species of natural enemies can have important consequences for the population dynamics of the species involved, particularly when intra-guild predation (IGP) occurs. However, these interactions are highly dependent on the type and behaviour of the prey, an aspect of IGP that is frequently overlooked. Here we demonstrate how a parasitoid (Dolichogenidea tasmanica) facilitates attack on a lepidopteran larva (Epiphyas postvittana) by a predatory mite (Anystis baccarum). We show that anti-predator behaviour of the lepidopteran larva is the mechanism that facilitates this. E. postvittana is protected by its silken leaf roll which limits predation by the mite except when the larva is attacked by the parasitoid causing the larva to leave its shelter. We explored the implications of the interactions among these three species for pest suppression by modelling changes in mite density and mite predation intensity. The presence of mites (the IG predator) always leads to a decrease in ability of the parasitoid to control E. postvittana and, as mite predation intensity increases, the ability of the parasitoid to suppress E. postvittana decreases. The results from the experiment show a synergistic interaction, but results from the population model show an interaction resulting in pest release. These findings support the general idea that if uni-directional IGP occurs, and competition is strong between the top and intermediate predator, then a single best control agent will likely be more effective at suppressing the prey population than multiple control agents combined. These findings have important implications for the management of E. postvittana in vineyards across Southern Australia and for other multi-species systems.  相似文献   

15.
Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has “top down” regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.  相似文献   

16.
Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.  相似文献   

17.
Compensatory or catch‐up growth following growth impairment caused by transient environmental stress, due to adverse abiotic factors or food, is widespread in animals. Such growth strategies commonly balance retarded development and reduced growth. They depend on the type of stressor but are unknown for predation risk, a prime selective force shaping life history. Anti‐predator behaviours by immature prey typically come at the cost of reduced growth rates with potential negative consequences on age and size at maturity. Here, we investigated the hypothesis that transient intraguild predation (IGP) risk induces compensatory or catch‐up growth in the plant‐inhabiting predatory mite Phytoseiulus persimilis. Immature P. persimilis were exposed in the larval stage to no, low or high IGP risk, and kept under benign conditions in the next developmental stage, the protonymph. High but not low IGP risk prolonged development of P. persimilis larvae, which was compensated in the protonymphal stage by increased foraging activity and accelerated development, resulting in optimal age and size at maturity. Our study provides the first experimental evidence that prey may balance developmental costs accruing from anti‐predator behaviour by compensatory growth.  相似文献   

18.
Predation among aquatic invertebrate predators can have important effects on patterns of exclusion and coexistence in aquatic habitats, especially if these predators also act as intraguild predators. Such patterns may be explained by variation in predator foraging mode and in the extent and overlap of habitat use. Predaceous diving beetles (Coleoptera: Dytiscidae) are abundant in isolated bodies of water and are effective predators on many aquatic organisms, including other dytiscids. The under-investigated role of hunting behavior and habitat use in altering outcomes of predation under different plant densities may offer insights into patterns of coexistence among larval dytiscids. I performed experiments that quantified behavior of larvae of three common genera of dytiscids that share common prey and then measured predation among genera in the presence or absence of aquatic plants. Behavioral analyses concluded that there were significant differences in foraging modes, with Dytiscus primarily exhibiting sit-and-wait tactics, Graphoderus engaging in active, open water searching, and Rhantus displaying combinations of these behaviors. Predation among larvae was common and occurred when predators were larger than the prey, with no indication of prey preference. Incidence of predation among generic combinations depended on the presence of plants and appeared to be related to behavioral differences among genera. The presence or absence of plants and differences in larval behavior may help to mitigate predation by reducing negative interactions in natural aquatic systems. These results have implications for IGP interactions and may be one of the explanations for the observed richness of this group of predators within aquatic habitats.  相似文献   

19.
Declines in native aphidophages in North America have been linked to intraguild predation (IGP) by the invasive coccinellid Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). It is feared that many British species will face a similar fate following the recent establishment of H. axyridis in the UK. Meanwhile, H. axyridis exists in apparent ecological equilibrium with other members of its guild in Japan. The impact of H. axyridis on British coccinellids is uncertain but intraguild predatory interactions do occur, particularly amongst immature stages. This study investigates IGP between immature stages of H. axyridis and various British and Japanese coccinellids. The only asymmetric IG predator of H. axyridis at first instar was Anatis ocellata (Linnaeus). Harmonia axyridis engaged in symmetric IGP with Coccinella septempunctata Linnaeus, Calvia quatuordecimguttata (Linnaeus), Harmonia quadripunctata (Pontoppidan) and Eocaria muiri Timberlake, but was the asymmetric IG predator of all other species studied. The level of IGP was high between fourth instar larvae, and frequently biased towards H. axyridis, except in the case of A. ocellata, which again was the only IG predator of H. axyridis. In interactions between fourth instar larvae and pre-pupae, IGP was unidirectional towards H. axyridis for all species except A. ocellata, which acted as both IG predator and IG prey. Pupae were better protected against IGP than pre-pupae but most species were still susceptible to attack by H. axyridis, although IGP was symmetric with A. ocellata, and H. quadripunctata pupae were never attacked. The differences in susceptibility of the various species and developmental stages to IGP by H. axyridis are discussed in relation to physical defence structures. We find no evidence that Japanese species have superior defences to British ones and suggest that behavioural strategies may enable co-existence in the native range. We discuss the relevance of IGP by H. axyridis to the species it is likely to encounter in Britain.  相似文献   

20.
Leaf pubescence mediates intraguild predation between predatory mites   总被引:1,自引:0,他引:1  
Plant morphological traits such as leaf pubescence may affect herbivores and their natural enemies at the individual, population and community levels. Leaf pubescence has been repeatedly shown to mediate predator‐herbivore interactions whereas the influence of leaf pubescence on predator–predator interactions such as intraguild predation (IGP) has seldom been investigated. Using a three‐pronged approach we assessed the influence of leaf pubescence on the predatory mites Kampimodromus aberrans and Euseius finlandicus. Both predators occur on broad‐leaved trees in Europe. Euseius finlandicus is mostly found on trees with glabrous leaves whereas K. aberrans mainly occurs on trees with pubescent leaves. We hypothesized that leaf pubescence mediates IGP between K. aberrans and E. finlandicus and thereby determines their dominance and proportional abundance. A field survey on apple revealed that the abundance of K. aberrans and E. finlandicus is negatively correlated, with the former predominating on cultivars with strongly pubescent leaves and the latter predominating on cultivars with little pubescent or glabrous leaves. Microhabitat choice tests showed that K. aberrans preferentially resides on pubescent leaves whereas E. finlandicus preferentially resides on glabrous leaves. The effects of leaf pubescence on survival and development of immature IG predators and IG prey were reversed for K. aberrans and E. finlandicus. In the presence of the IG predator E. finlandicus, immature K. aberrans had higher survival probabilities on pubescent leaves than on glabrous ones. In contrast, the survival chances of immature E. finlandicus were higher on glabrous leaves than on pubescent ones when the IG predator K. aberrans was present. Artificial leaf pubescence enhanced IG prey capture by immature K. aberrans and prolonged their longevity but impaired IG prey capture by immature E. finlandicus and shortened their longevity. We conclude that leaf pubescence mediates IGP strength and symmetry and discuss the implications to natural and biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号