首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The present study reports the effect of oxygen addition on small size Nin (n = 1-6) clusters in different spin states within the framework of linear combination of atomic orbital (LCAO) density functional theory (DFT) under spin polarized generalized gradient approximation (GGA) functional. Relative stabilities of the optimized clusters are discussed on the basis of the calculated parameters, such as, binding energy (BE), embedding energy (EE) and fragmentation energy (FE). Other parameters, like ionization potential (IP), electron affinity (EA), etc. show that though the additions of oxygen can affect the chemical properties of Nin clusters with an additional stability to NinO. In most of the cases the magnetic moment of the stable isomers are geometry dependent for a particular size both in pure and oxidized clusters. Calculated magnetic moments of NinO (n = 1-6) clusters reveal that the magnetic moment of ground state Ni4O isomers in different geometries is same as in pure Ni4 isomers. Present study also explains the cause of stable magnetic moment in Ni4O cluster through the distribution of electrons in different orbitals.  相似文献   

2.
The present study reports the geometry, electronic structure, growth behavior and stability of neutral and ionized nickel encapsulated germanium clusters containing 1–20 germanium atoms within the framework of a linear combination of atomic orbital density functional theory (DFT) under a spin polarized generalized gradient approximation. In the growth pattern, Ni-capped Gen and Ni-encapsulated Gen clusters appear mostly as theoretical ground state at a particular size. To explain the relative stability of the ground state clusters, variation of different parameters, such as average binding energy per atom (BE), embedding energy (EE) and fragmentation energy (FE) of the clusters, were studied together with the size of the cluster. To explain the chemical stability of the clusters, different parameters, e.g., energy gap between the highest occupied and lowest unoccupied molecular orbitals (HOMO–LUMO gap), ionization energy (IP), electron affinity (EA), chemical potential (μ), chemical hardness (η), and polarizability etc. were calculated and are discussed. Finally, natural bond orbital (NBO) analysis was applied to understand the electron counting rule applied in the most stable Ge10Ni cluster. The importance of the calculated results in the design of Ge-based superatoms is discussed.
Figure
Different valence orbitals of 20-electron ground state clusters  相似文献   

3.
The stable geometries and atomization energies for the clusters Ni n (n = 2–5) are predicted with all-electron density functional theory (DFT), using the BMK hybrid functional and a Gaussian basis set. Possible isomers and several spin states of these nickel clusters are considered systematically. The ground spin state and the lowest energy isomers are identified for each cluster size. The results are compared to available experimental and other theoretical data. The molecular orbitals of the largest cluster are plotted for all spin states. The relative stabilities of these states are interpreted in terms of superatom orbitals and no-pair bonding.  相似文献   

4.
Ab initio methods based on density functional theory at BP86 level were applied to the study of the geometrical structures, relative stabilities, and electronic properties of small bimetallic Be2Au n (n = 1–9) clusters. The optimized geometries reveal that the most stable isomers have 3D structures at n = 3, 5, 7, 8, and 9. Here, the relative stabilities were investigated in terms of the averaged atomic binding energies, fragmentation energies and second-order difference of energies. The results show that the planar Be2Au4 structure is the most stable structure for Be2Au n clusters. The HOMO−LUMO gap, vertical ionization potential, vertical electron affinity and chemical hardness exhibit a pronounced even–odd alternating phenomenon. In addition, charge transfer and natural electron configuration were analyzed and compared.  相似文献   

5.
The present study reports the geometries, electronic structures, growth behavior, and stabilities of neutral and ionized copper-doped germanium clusters containing 1–20 Ge atoms within the framework of linear combination of atomic orbitals density functional theory (DFT) under the spin-polarized generalized gradient approximation. It was found that Cu-capped Ge n (or Cu-substituted Ge n+1) and Cu-encapsulated Ge n clusters mostly occur in the ground state at a particular cluster size (n). In order to explain the relative stabilities of the ground-state clusters, parameters such as the average binding energy per atom (BE), the embedding energy (EE), and the fragmentation energy (FE) of the clusters were calculated, and the resulting values are discussed. To explain the chemical stabilities of the clusters, parameters such as the energy gap between the highest occupied and the lowest unoccupied molecular orbitals (the HOMO–LUMO gap), the ionization energy (IP), the electron affinity (EA), the chemical potential (μ), the chemical hardness (η), and the polarizability were calculated, and the resulting values are also discussed. Natural atomic orbital (NAO) and natural bond orbital (NBO) analyses were also used to determine the electron-counting rule that should be applied to the most stable Ge10Cu cluster. Finally, the relevance of the calculated results to the design of Ge-based superatoms is discussed.
Figure Contributions of the valance orbitals of the Ge and Cu atom(s) to the HOMO of the ground-state icosahedral Ge10Cu cluster obtained from NBO analysis. The numbers below the clusters represent the occupancies of the HOMO orbitals
  相似文献   

6.
A systematic study on the geometric structures, relative stabilities, and electronic properties of small bimetallic Au n Na (n = 1-9) clusters has been performed by means of first-principle density functional theory calculations at the PW91PW91 level. The results show that the optimized ground-state isomers adopt planar structures up to n = 5, and the Na-capped geometries are dominant growth patterns for n = 6-9. Dramatic odd-even alternative behaviors are obtained in the second-order difference of energies, fragmentation energies, highest occupied-lowest unoccupied molecular orbital energy gaps, and chemical hardness for both Au n Na and Au n+1 clusters. It is found that Au5Na and Au6 have the most enhanced stability. Here, the size evolutions of the theoretical ionization potentials are in agreement with available experimental data, suggesting a good prediction of the lowest energy structures in the present study. In addition, the charge transfer has been analyzed on the basis of natural population analysis.  相似文献   

7.
Using the first-principle density functional calculations, the equilibrium geometries and electronic properties of anionic and neutral aluminum-sulfur Al n S m (2?≤?n?+?m?≤?6) clusters have been systematically investigated at B3PW91 level. The optimized results indicate that the lowest-energy structures of the anionic and neutral Al n S m clusters prefer the low spin multiplicities (singlet or doublet) except the Al2 ̄, Al2, S2, Al4 and Al2S4 clusters. A significant odd-even oscillation of the highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) energy gaps for the Al n S m  ̄ clusters is observed. Electron detachment energies (both vertical and adiabatic) are discussed and compared with the photoelectron spectra observations. Furthermore, a good agreement between experimental and theoretical results gives confidence in the most stable clusters considered in the present study and validates the chosen computational method. In addition, the variation trend of chemical hardness is in keeping with that of HOMO-LUMO energy gaps for the Al n S m clusters. Upon the interaction of oxygen with the stable AlS m  ̄ clusters, the dissociative chemisorptions are favorable in energy. The binding energy and Gibbs free energy change show completely opposite oscillating behaviors as the cluster size increases.  相似文献   

8.
Hydrogen dissociative chemisorption and desorption on small lowest energy Nin clusters up to n = 13 as a function of H coverage was studied using density functional theory. H adsorption on the clusters was found to be preferentially at edge sites followed by 3-fold hollow sites and on-top sites. The minimum energy path calculations suggest that H2 dissociative chemisorption is both thermodynamically and kinetically favorable and the H atoms on the clusters are mobile. Calculations on the sequential H2 dissociative chemisorption on the clusters indicate that the edge sites are populated first and subsequently several on-top sites and hollow sites are also occupied upon full cluster saturation. In all cases, the average hydrogen capacity on Nin clusters is similar to that of Pdn clusters but considerably smaller than that of Ptn clusters. Comparison of hydrogen dissociative chemisorption energies and H desorption energies at full H-coverage among the Ni family clusters was made.  相似文献   

9.
The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H2O)n (n = 1–3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H2O)n (n = 1–3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1–3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H2O)3 complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.  相似文献   

10.
Structural and chemical properties of charged and neutral Lithium microclusters are investigated for [Formula: see text]. A total of 18 quantum conformational spaces are randomly walked to produce candidate structures for local minima. Very rich potential energy surfaces are produced, with the largest structural complexity predicted for anionic clusters. Analysis of the electron charge distributions using the quantum theory of atoms in molecules (QTAIM) predicts major stabilizing roles of Non-nuclear attractors (NNAs) via NNA···Li interactions with virtually no direct Li···Li interactions, except in the least stable configurations. A transition in behavior for clusters containing more than seven nuclei is observed by using the recently introduced quantum topology to determine in a quantum mechanically consistent fashion the number of spatial dimensions each cluster has. We experiment with a novel scheme for extracting persistent structural motifs with increase in cluster size. The new structural motifs correlate well with the energetic stability, particularly in highlighting the least stable structures. Quantifying the degree of covalent character in Lithium bonding independently agrees with the observation in the transition in cluster behavior for lithium clusters containing more than seven nuclei. Good correlation with available experimental data is obtained for all properties reported in this work.  相似文献   

11.
Bonding patterns and electron counts of high-symmetry transition metal cluster compounds are discussed using a simplified Tensor Surface Harmonic (TSH) treatment. An n-vertex metal cluster has 9n valence atomic orbitals. From this set orbitals concerned in metal–ligand bonding are eliminated to yield the effective valence orbitals available to cluster bonding. Applying TSH theory to this smaller set gives a clear classification of the cluster MOs and their bonding/antibonding characteristics. Orbital mixing allowed by point group symmetry gives a final, qualitative cluster MO diagram. Results for triangular, tetrahedral and octahedral clusters are compared with other models.  相似文献   

12.
The intermolecular interactions between Aun (n = 3–4) clusters and selected amino acids cysteine and glycine have been investigated by means of density functional theory (DFT). Present calculations show that the complexes possessing Au-NH2 anchoring bond are found to be energetically favored. The results of NBO and frontier molecular orbitals analysis indicate that for the complex with anchoring bonds, lone pair electrons of sulfur, oxygen, and nitrogen atoms are transferred to the antibonding orbitals of gold, while for the complex with the nonconventional hydrogen bonds (Au···H–O), the lone pair electrons of gold are transferred to the antibonding orbitals of O-H bonds during the interaction. Furthermore, the interaction energy calculations show that the complexes with Au-NH2 anchoring bond have relatively high intermolecular interaction energy, which is consistent with previous computational studies.  相似文献   

13.
Thompson JE  Fry SC 《Planta》2000,211(2):275-286
 Neutral xyloglucan was purified from the cell walls of suspension-cultured rose (Rosa sp. `Paul's Scarlet') cells by alkali extraction, ethanol precipitation and anion-exchange chromatography on `Q-Sepharose FastFlow'. The procedure recovered 70% of the total xyloglucan at about 95% purity in the neutral fraction. The remaining 30% of the xyloglucan was anionic, as demonstrated both by anion-exchange chromatography at pH 4.7 and by high-voltage electrophoresis at pH 6.5. Alkali did not cause neutral xyloglucan to become anionic, indicating that the anionic nature of the rose xyloglucan was not an artefact of the extraction procedure. Pre-incubation of neutral [3H]xyloglucan with any of ten non-radioactive acidic polysaccharides did not cause the radioactive material to become anionic as judged by electrophoresis, indicating that stable complexes between neutral xyloglucan and acidic polysaccharides were not readily formed in vitro. The anionic xyloglucan did not lose its charge in the presence of 8 M urea or after a second treatment with NaOH, indicating that its anionic nature was not due to hydrogen-bonding of xyloglucan to an acidic polymer. Proteinase did not affect the anionic xyloglucan, indicating that it was not associated with an acidic protein. Cellulase converted the anionic xyloglucan to the expected neutral nonasaccharide and heptasaccharide, indicating that the repeat-units of the xyloglucan did not contain acidic residues. Endo-polygalacturonase converted about 40% of the anionic xyloglucan to neutral material. Arabinanase and galactanase also converted appreciable proportions of the anionic xyloglucan to neutral material. These results show that about 30% of the xyloglucan in the cell walls of suspension-cultured rose cells exists in covalently-linked complexes with acidic pectins. Received: 5 November 1999 / Accepted: 18 January 2000  相似文献   

14.
This study compares the energetic cost of reproduction during gestation and lactation of a eutherian, the golden hamster (Mesocricetus auratus), and a similar-sized (60–120 g) marsupial, the gray short-tailed opossum (Monodelphis domestica). Food consumption was monitored in 20 reproductively active (RA) opossums and 16 RA hamsters from conception to weaning and at equivalent intervals in 19 non-reproductive (NR) opossums and 21 NR hamsters, all maintained within their zone of thermoneutrality (30 °C). Total energy assimilated from conception to weaning [opossums: 1261.3 ± 28.0 Kcal (1 Kcal = 4.1868 J) and hamsters: 1647.5 ± 60.6 Kcal] was positively correlated with litter size and mass per young in both species. Maternal mass-specific assimilated energy was significantly greater in hamsters than in opossums during gestation (P < 0.001), but not during lactation or from conception to weaning (P > 0.05). Efficiency of offspring production (energy stored in young/incremental energy in RA females) was higher in hamsters than in opossums and, in both species, it was higher during lactation than in gestation. The energetic cost of reproduction (per young per day) was higher in hamsters than in opossums. The marsupial mode of reproduction, as seen in opossums, yields young at lower cost but requires a longer reproductive period than is the case for a similar-sized eutherian. Accepted: 8 September 1998  相似文献   

15.
Three exterilium larvae (18.2 mm notochord length to 113.3 mm standard length) of an ophidiid, Lamprogrammus shcherbachevi, from the western North Pacific are described. The specimens had a highly specialized morph with a remarkably elongate trailing gut and ventral coracoid process, and many elongate anterior dorsal fin rays, as occur in other exterilium larvae, but were characterized by unique melanophore patterns (a cluster of melanophores on the back of the stalked pectoral fin base, a row of clusters midlaterally on the trunk and caudal region, and further clusters on the trailing gut). Although the largest specimen (113.3 mm standard length, much larger than the previously recorded maximum size of exterilium larvae) retained typical features of the exterilium stage, the ventral coracoid process was significantly reduced in size compared with that of a smaller specimen (37.8 mm standard length). Comparison of the largest specimen with an adult suggests that the anterior dorsal fin rays would disappear during the transformation stage.  相似文献   

16.
The structures and energy properties for Agn (n = 1-8) metal clusters adsorbed on the perfect and oxygen vacancy MgO surfaces have been studied by using the DFT/UB3LYP method with an embedded cluster model. The nucleation and mobility model for the Agn (n = 1-8) clusters on the perfect and oxygen vacancy MgO(100) surfaces was investigated. The results show that the Ag atoms locate initially at the surface oxygen vacancy sites; then, with the growth of Ag cluster sizes, the large Ag clusters move possibly out of the vacancy sites by a rolling model, and diffuse on the MgO surface under a certain temperature condition. The relative energies needed for moving out of the oxygen vacancy region for the adsorbed Agn clusters with the rolling model have been predicted. The even-odd oscillation behaviors for the cohesive energies, nucleation energies, first ionization potentials and HOMO-LUMO gaps of the adsorbed Agn clusters with the variation of cluster sizes have also been discussed.  相似文献   

17.
The Hogsback (32°33S 26°57E) and Alice (32°47S 26°50E), Eastern Cape, South Africa, are separated by only 24 km but by 1000 m in altitude and fall into different climatic regions. Thermal responses (energy expenditure and body temperature) to ambient temperature were measured in a population of vlei rats (Otomys irroratus) from each of the two localities. We predicted that animals from the colder Hogsback would show differences in their thermal physiology and morphology consistent with better cold-resistance. Basal metabolic rates of the Hogsback population were slightly, but not significantly, higher than the Alice population (23.9 J g−1 h−1 vs 22.3 J g−1 h−1), but the slope of the regression between energy expenditure and ambient temperature below the thermal neutral zone was significantly lower (−1.28 vs −1.60). Body temperature, although quite variable in both populations, was not significantly influenced by ambient temperature in the Hogsback population, whereas that of Alice animals was. Fur length was longer and relative size of the ears and tail was smaller in the Hogsback population, which probably accounted for the slightly lower minimum thermal conductance (1.79 J g−1 h−1 °C−1 vs 1.91 J g−1 h−1 °C−1) in the Hogsback population. Vlei rats from the two sites also have different karyotypes that correlate with climate but there is insufficient evidence at present to suggest that the different karyotypes and the physiological parameters measured are adaptive. Accepted: 15 October 1998  相似文献   

18.
Hypervalent M2X (M = Li, Na; X = F, Cl) clusters are prototype species possessing lower ionisation potentials than Li, therefore classified as superalkalis. This study reveals some interesting properties of these small clusters using ab initio MP2/aug-cc-pVTZ and QCISD/aug-cc-pVTZ methods. These clusters are shown as an ionic species, composed of positively charged cage of alkali metals (M2+) and halogen anion (X?). Therefore, the stability of M2X is governed by both ionic and covalent interactions. We show that the excess valence electron of (M2+) is pushed out by anionic X?, which allows M2X clusters to possess ‘electride’ characteristics. It is also due to this excess electron that M2X clusters exhibit significant non-linear optical (NLO) properties. The dipole moment, mean polarisability and hyperpolarisability suggest their significant NLO responses, which are explained on the basis of electronic transitions in crucial excited states using TD-B3LYP/aug-cc-pVTZ method. The first static hyperpolarisabilities of Li2F and Na2F take the values of order of 104 a.u. due to their lower transition energies. This study should provide new insights into the design of novel materials with significant NLO responses useful for electro-optical applications.  相似文献   

19.
The electron transport of the 4-(3-nitro-4-tetrafluorophenylthiolate-ethynyl, phenylethynyl) benzenethiolate (S-FNPPB-o) molecule assembled in two Au (111) electrodes, was studied using two approaches: in the first approximate approach an electric field was applied to the pure molecule attached to two thiolate ends fixed, and in the second approach we used the nonequilibrium Green′s function formalism (NEGF) coupled to DFT to calculate the I-V curve and the voltage dependence of the transmission function in the extended system, molecule plus electrodes. By applying an electric field to the pure molecule plus thiolate ends fixed, and visualizing the changes in the spatial distribution of the frontier molecular orbitals, we can expect based on the continuity of the conduction pathway in electron transport, that if electron transport occurs through the frontier orbitals, only the LUMO orbital would create an open channel for electron transport due to its delocalized nature and large orbital density at the thiolate groups. The NEGF calculations indicate that at applied voltages lower than ±0.8 V, the current is related to transmission values through the tails of the broad LUMO orbital, and since this orbital is the one closer to the Fermi energy, and we observed very low current values in this region, higher current values at positive bias than at negative bias. As the voltage exceeds ±0.8 V the current increases from the contribution of more states from the broadened part of the transmission function from the LUMO orbital, and when the voltage approaches ±2 V, the LUMO + 1 orbital enters into the bias window and the current increases again.  相似文献   

20.
Summary.  Syagrus coronata is an economically important palm tree grown as an ornament, for the oil extracted from its seeds, and the wax from its leaves which has several applications in industry. Silicon biocomposites were analyzed in leaves of S. coronata. Silica bodies were found as extracellular silica masses between the hypodermal-layer cell walls and in granules present in the vacuoles of palisade cells. Scanning electron microscopy of the hypodermal layer of cells showed a collection of spherical bodies embedded in enveloping cavities that outlined the general structure of the bodies. Globular subunits with sharp edges formed the spherical bodies that ranged from 6 to 10 μm in diameter (average, 7.8 μm). X-ray microanalysis detected only silicon and oxygen homogeneously distributed throughout the bodies. Vacuoles of palisade cells contained a large number of granules ranging from 20 nm to 1.2 μm in size (average, 300 nm). Transmission electron microscopy associated with electron spectroscopic imaging and electron energy loss spectroscopy were used to determine the elemental composition of the granules. Vacuolar granules were amorphous and composed of silicon and oxygen, suggesting they consist of amorphous silica biominerals. No nitrogen, indicative of organic matter, was detected in the granules. Received November 26, 2001; accepted July 1, 2002; published online October 31, 2002 RID="*" ID="*" Correspondence and reprints: Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saude, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号