首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests a pivotal role of mesenchymal stem cells (MSCs) or stromal cells in tumorigenesis. In the present study, we demonstrated that ascites from ovarian cancer patients and LPA increased migration of human MSCs. The migration of MSCs induced by LPA and malignant ascites was completely abrogated by pretreatment with Ki16425, an antagonist of LPA receptors, and by silencing of endogenous LPA(1), but not LPA(2), with small interference RNA, suggesting a key role of LPA played in the malignant ascites-induced migration. LPA induced activation of ERK through pertussis toxin-sensitive manner, and pretreatment of MSCs with U0126, a MEK inhibitor, or pertussis toxin attenuated the LPA-induced migration. Moreover, LPA induced activation of RhoA in MSCs, and pretreatment of the cells with Y27632, a Rho kinase inhibitor, markedly inhibited the LPA-induced migration. In addition, LPA and malignant ascites increased intracellular concentration of calcium in MSCs, and Ki16425 completely inhibited the elevation of intracellular calcium. These results suggest that LPA is a crucial component of the malignant ascites which induce the migration of MSCs and elevation of intracellular calcium.  相似文献   

2.
Carcinoma-associated fibroblasts play a key role in tumorigenesis and metastasis by providing a tumor-supportive microenvironment. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) to carcinoma-associated fibroblasts expressing α-smooth muscle actin, vascular endothelial growth factor, and stromal cell-derived factor-1. A549 conditioned medium-induced differentiation of hASCs to carcinoma-associated fibroblasts was completely abrogated by treatment of hASCs with Ki16425, a lysophosphatidic acid receptor antagonist, or knockdown of lysophosphatidic acid receptor 1 (LPA1) expression in hASCs with small interfering RNA or lentiviral short hairpin RNA. Using a murine xenograft transplantation model of A549 cells, we showed that co-transplantation of hASCs with A549 cells stimulated growth of A549 xenograft tumor, angiogenesis, and differentiation of hASCs to carcinoma-associated fibroblasts in vivo. Knockdown of LPA1 expression in hASCs abrogated hASCs-stimulated growth of A549 xenograft tumor, angiogenesis, and differentiation of hASCs to carcinoma-associated fibroblasts. Moreover, A549 conditioned medium-treated hASCs stimulated tube formation of human umbilical vein endothelial cells by LPA1-dependent secretion of vascular endothelial growth factor. These results suggest that A549 cells induce in vivo differentiation of hASCs to carcinoma-associated fibroblasts, which play a key role in tumor angiogenesis within tumor microenvironment, through an LPA-LPA1-mediated paracrine mechanism.  相似文献   

3.
Lignans are major constituents of plant extracts and have important pharmacological effects on mammalian cells. Here we showed that pinoresinol-4,4′-di-O-β-d-glucoside (PDG) from Valeriana officinalis induced calcium mobilization and cell migration through the activation of lysophosphatidic acid (LPA) receptor subtypes. Stimulation of mouse embryo fibroblast (MEF) cells with 10 μM PDG resulted in strong stimulation of MEF cell migration and the EC50 was about 2 μM. Pretreatment with pertussis toxin (PTX), an inhibitor of Gi protein, completely blocked PDG-induced cell migration demonstrating that PDG evokes MEF cell migration through the activation of the Gi-coupled receptor. Furthermore, pretreatment of MEF cells with Ki16425 (10 μM), which is a selective antagonist for LPA1 and LPA3 receptors, completely blocked PDG-induced cell migration. Likewise, PDG strongly induced calcium mobilization, which was also blocked by Ki16425 in a dose-dependent manner. Prior occupation of the LPA receptor with LPA itself completely blocked PDG-induced calcium mobilization. Finally, PDG-induced MEF cell migration was attenuated by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor such as LY294002. Cells lacking downstream mediator of PI3K such as Akt1 and Akt2 (DKO cells) showed loss of PDG-induced migration. Re-expression of Akt1 (but not Akt2) completely restored PDG-induced DKO cell migration. Given these results, we conclude that PDG is a strong inducer of cell migration. We suggest that the pharmacological action of PDG may occur through the activation of an LPA receptor whereby activation of PI3K/Akt signaling pathway mediates PDG-induced MEF cell migration.  相似文献   

4.
Lysophosphatidic acid (LPA) is enriched in the serum and malignant effusion of cancer patients and plays a key role in tumorigenesis and metastasis. LPA-activated mesenchymal stem cells promote tumorigenic potentials of cancer cells through a paracrine mechanism. LPA-conditioned medium (LPA CM) from human adipose tissue-derived mesenchymal stem cells (hASCs) elicited adhesion and proliferation of A549 human lung adenocarcinoma cells. To identify proteins involved in the LPA-stimulated paracrine functions of hASCs, we analyzed the LPA CM using liquid-chromatography tandem mass spectrometry-based shotgun proteomics. We identified βig-h3, an extracellular matrix protein that is implicated in tumorigenesis and metastasis, as an LPA-induced secreted protein in hASCs. LPA-induced βig-h3 expression was abrogated by pretreating hASCs with the LPA receptor(1/3) inhibitor Ki16425 or small interfering RNA-mediated silencing of endogenous LPA(1). LPA-induced βig-h3 expression was blocked by treating the cells with the Rho kinase inhibitor Y27632, implying that LPA-induced βig-h3 expression is mediated by the LPA(1)- Rho kinase pathway. Immunodepletion or siRNA-mediated silencing of βig-h3 abrogated LPA CM-stimulated adhesion and proliferation of A549 cells, whereas retroviral overexpression of βig-h3 in hASCs potentiated it. Furthermore, recombinant βig-h3 protein stimulated the proliferation and adhesion of A549 human lung adenocarcinoma cells. These results suggest that hASC-derived βig-h3 plays a key role in tumorigenesis by stimulating the adhesion and proliferation of cancer cells and it can be applicable as a biomarker and therapeutic target for lung cancer.  相似文献   

5.

Introduction

Lysophosphatidic acid (LPA) is a bioactive lipid that binds to G protein–coupled receptors (LPA1–6). Recently, we reported that abrogation of LPA receptor 1 (LPA1) ameliorated murine collagen-induced arthritis, probably via inhibition of inflammatory cell migration, Th17 differentiation and osteoclastogenesis. In this study, we examined the importance of the LPA–LPA1 axis in cell proliferation, cytokine/chemokine production and lymphocyte transmigration in fibroblast-like synoviocytes (FLSs) obtained from the synovial tissues of rheumatoid arthritis (RA) patients.

Methods

FLSs were prepared from synovial tissues of RA patients. Expression of LPA1–6 was examined by quantitative real-time RT-PCR. Cell surface LPA1 expression was analyzed by flow cytometry. Cell proliferation was analyzed using a cell-counting kit. Production of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), chemokine (C-C motif) ligand 2 (CCL2), metalloproteinase 3 (MMP-3) and chemokine (C-X-C motif) ligand 12 (CXCL12) was measured by enzyme-linked immunosorbent assay. Pseudoemperipolesis was evaluated using a coculture of RA FLSs and T or B cells. Cell motility was examined by scrape motility assay. Expression of adhesion molecules was determined by flow cytometry.

Results

The expression of LPA1 mRNA and cell surface LPA1 was higher in RA FLSs than in FLSs from osteoarthritis tissue. Stimulation with LPA enhanced the proliferation of RA FLSs and the production of IL-6, VEGF, CCL2 and MMP-3 by FLSs, which were suppressed by an LPA1 inhibitor (LA-01). Ki16425, another LPA1 antagonist, also suppressed IL-6 production by LPA-stimulated RA FLSs. However, the production of CXCL12 was not altered by stimulation with LPA. LPA induced the pseudoemperipolesis of T and B cells cocultured with RA FLSs, which was suppressed by LPA1 inhibition. In addition, LPA enhanced the migration of RA FLSs and expression of vascular cell adhesion molecule and intercellular adhesion molecule on RA FLSs, which were also inhibited by an LPA1 antagonist.

Conclusions

Collectively, these results indicate that LPA–LPA1 signaling contributes to the activation of RA FLSs.  相似文献   

6.
We observed that lysophosphatidylglycerol (LPG) stimulates chemotactic migration in human natural killer (NK) cells. The LPG-induced chemotactic migration of NK cells was completely inhibited by pertussis toxin (PTX). LPG also stimulated the extracellular signal-regulated kinase (ERK) and Akt activities in NK cells. LPG-stimulated ERK activity was inhibited by PTX, indicating the involvement of PTX-sensitive G-proteins. The preincubation of NK cells with an ERK inhibitor (PD98059) or phosphoinositide-3-kinase (PI3K) inhibitors (wortmannin and LY294002) completely inhibited LPG-induced chemotactic migration, suggesting the essential role of ERK and PI3K in the process. Moreover, LPG-induced chemotactic migration in NK cell was inhibited by Ki16425, an LPA1/3 receptor-selective antagonist, suggesting the involvement of the Ki16425-sensitive G-protein coupled receptor (GPCR) in the process. Taken together, the results indicate that LPG stimulates chemotactic migration in NK cells through GPCR, suggesting a new function of LPG as a modulator of NK cell functioning.  相似文献   

7.
We reported previously that regenerated Antheraea pernyi silk fibroin (A. pernyi SF) could support the attachment and growth of human bone marrow mesenchymal stem cells (hBMSCs). In this work, the immunosupressive effects of hBMSCs cultured on the A. pernyi SF films on T-cells were investigated in vitro. The production of IL-6, CD80, CD86 and HLA-DR by the hBMSCs was also observed. The study showed that hBMSCs cultured on the regenerated A. pernyi SF films still kept their immunosupression on T-cell proliferation and IL-2 secretion. Moreover, regenerated A. pernyi SF like regenerated Bombyx mori SF and collagen did not elicit T-cell proliferation but it could support the expression of IL-6 and surface antigen of hBMSCs. Regenerated A. pernyi SF can maintain the function of hBMSCs in immunomodulation and cytokines production, which has the potential utility of hBMSCs combined with A. pernyi SF in tissue replacement and repair.  相似文献   

8.
Platelet-derived growth factor (PDGF) is a critical regulator of proliferation and migration for mesenchymal type cells. In this study, we examined the role of mitogen-activated protein (MAP) kinases in the PDGF-BB-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells (hATSCs). The PDGF-induced proliferation was prevented by a pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor, SP600125. However, it was not prevented by a pretreatment with a p38 MAP kinase inhibitor, SB202190, and a specific inhibitor of the upstream kinase of extracellular signal-regulated kinase (ERK1/2), U0126. Treatment with PDGF induced the activation of JNK and ERK in hATSCs, and pretreatment with SP600125 specifically inhibited the PDGF-induced activation of JNK. Treatment with PDGF induced the cell cycle transition from the G0/G1 phase to the S phase, the elevated expression of cyclin D1, and the phosphorylation of Rb, which were prevented by a pretreatment with SP600125. In addition, the PDGF-induced migration of hATSCs was completely blocked by a pretreatment with SP600125, but not with U0126 and SB202190. These results suggest that JNK protein kinase plays a key role in the PDGF-induced proliferation and migration of mesenchymal stem cells.  相似文献   

9.
While inflammatory cytokines are well-recognized critical factors for the induction of cyclooxygenase-2 (COX-2) in activated fibroblast-like synovial cells, the roles of biologically active components other than inflammatory cytokines in synovial fluid remain unknown. Herein, we assessed the role of lysophosphatidic acid (LPA), a pleiotropic lipid mediator, in COX-2 induction using synovial fluid of patients with rheumatoid arthritis (RA) in fibroblast-like RA synovial cells. Synovial fluid from RA patients stimulated COX-2 induction, which was associated with prostaglandin E(2) production, in RA synovial cells. The synovial fluid-induced actions were inhibited by G(i/o) protein inhibitor pertussis toxin and LPA receptor antagonist 3-(4-[4-([1-(2-chlorophenyl)ethoxy]carbonyl amino)-3-methyl-5-isoxazolyl] benzylsulfanyl) propanoic acid (Ki16425). In fact, LPA alone significantly induced COX-2 expression and enhanced IL-1alpha- or IL-1beta-induced enzyme expression in a manner sensitive to pertussis toxin and Ki16425. RA synovial cells abundantly expressed LPA(1) receptor compared with other LPA receptor subtypes. Moreover, synovial fluid contains a significant amount of LPA, an LPA-synthesizing enzyme autotaxin, and its substrate lysophosphatidylcholine. In conclusion, LPA existing in synovial fluid plays a critical role in COX-2 induction in collaboration with inflammatory cytokines in RA synovial cells. Ki16425-sensitive LPA receptors may be therapeutic targets for RA.  相似文献   

10.
Lysophosphatidic acid (LPA) is a major serum lysophospholipid that stimulates cell migration in diverse cell types including ovarian cancer cells. We report here that in the absence of Gi function, LPA induces inhibition, rather than stimulation, of cellular Rac activity, lamellipodium formation, and cell migration in response to insulin like growth factor I (IGF-I) in Chinese hamster ovary (CHO) cells, which solely express LPA1 as a LPA receptor. The inhibitory effects of LPA are abrogated by the expression of either Galpha13 C-terminal peptide or C3 toxin pretreatment, but not a Rho kinase inhibitor. Without PTX pretreatment, LPA stimulates Rac and cell migration yet similarly activates Rho, indicating that Rho activation by itself is not sufficient for inhibition of cell migration. Conversely, the expression of a dominant negative Rac mutant sufficiently mimics the LPA inhibition of cell migration. LPA inhibits IGF I-induced Akt activation by only 40% in a manner dependent on Rho kinase. These results demonstrate that inhibition of Gi function converts LPA regulation on Rac and cell migration to an inhibitory mode, which is mediated by G13 and Rho but not Rho kinase, and raise a possibility of Gi as a new therapeutic target for LPA-dependent tumor progression.  相似文献   

11.
Lysophosphatidic acid (LPA) is a low-molecular-weight lysophospholipid (LPL), which regulates endothelial cells participating in inflammation processes via interactions with endothelial differentiation gene (Edg) family G protein-coupled receptors. In this study, we attempted to determine which LPA receptors mediate the inflammatory response in human endothelial cells. Introduction of siRNA against LPA1 significantly suppressed LPA-induced ICAM-1 mRNA, total protein, and cell surface expressions, and subsequent U937 monocyte adhesion to LPA-treated human umbilical endothelial cells (HUVECs). By knock down of LPA1 and LPA3 in HUVECs, LPA-enhanced IL-1β mRNA expression was significantly attenuated. Moreover, LPA1 and LPA3 siRNA also inhibited LPA-enhanced IL-1-dependent long-term IL-8 and MCP-1 mRNA expression, and subsequent THP-1 cell chemotaxis toward LPA-treated HUVEC-conditioned media. These results suggest that the expression of LPA-induced inflammatory response genes is mediated by LPA1 and LPA3. Our findings suggest the possible utilization of LPA1 or LPA3 as drug targets to treat severe inflammation.  相似文献   

12.
Mesenchymal stem cells stimulate tumor growth in vivo through a lysophosphatidic acid (LPA)-dependent mechanism. However, the molecular mechanism by which mesenchymal stem cells stimulate tumorigenesis is largely elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induces expression of periostin, an extracellular matrix protein, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated periostin expression was abrogated by pretreatment of hASCs with the LPA receptor 1 (LPA(1)) inhibitor Ki16425 or short hairpin RNA-mediated silencing of LPA(1), suggesting a key role of the LPA-LPA(1) signaling axis in A549 CM-stimulated periostin expression. Using a xenograft transplantation model of A549 cells, we demonstrated that co-injection of hASCs potentiated tumor growth of A549 cells in vivo and that co-transplanted hASCs expressed not only periostin but also α-smooth muscle actin (α-SMA), a marker of carcinoma-associated fibroblasts. Small interfering RNA- or short hairpin RNA-mediated silencing of periostin resulted in blockade of LPA-induced α-SMA expression in hASCs. In addition, silencing of periostin resulted in blockade of hASC-stimulated growth of A549 xenograft tumors and in vivo differentiation of transplanted hASCs to α-SMA-positive carcinoma-associated fibroblasts. Conditioned medium derived from LPA-treated hASCs (LPA CM) potentiated proliferation and adhesion of A549 cells and short interfering RNA-mediated silencing or immunodepletion of periostin from LPA CM abrogated proliferation and adhesion of A549 cells. These results suggest a pivotal role for hASC-secreted periostin in growth of A549 xenograft tumors within the tumor microenvironment.  相似文献   

13.
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptors (LPA1-LPA6). LPA1, which is predominantly expressed in the brain, plays a pivotal role in brain development. However, the role of LPA1 in neuronal migration has not yet been fully elucidated. Here, we delivered LPA1 to mouse cerebral cortex using in utero electroporation. We demonstrated that neuronal migration in the cerebral cortex was not affected by the overexpression of LPA1. Moreover, these results can be applied to the identification of the localization of LPA1. The subcellular localization of LPA1 was endogenously present in the perinuclear area, and overexpressed LPA1 was located in the plasma membrane. Furthermore, LPA1 in developing mouse cerebral cortex was mainly expressed in the ventricular zone and the cortical plate. In summary, the overexpression of LPA1 did not affect neuronal migration, and the protein expression of LPA1 was mainly located in the ventricular zone and cortical plate within the developing mouse cerebral cortex. These studies have provided information on the role of LPA1 in brain development and on the technical advantages of in utero electroporation.  相似文献   

14.
Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3.  相似文献   

15.
Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA1–LPA6) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA1 and LPA5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA1.  相似文献   

16.
Sphingosylphosphorylcholine (SPC) has been implicated in a variety of cellular responses, including proliferation and differentiation. In this study, we demonstrate that d-erythro-SPC, but not l-threo-SPC, stereoselectively stimulated the proliferation of human adipose tissue-derived mesenchymal stem cells (hADSCs), with a maximal increase at 5 microM, and increased the intracellular concentration of Ca(2+) ([Ca(2+)](i)) in hADSCs, which do not express known SPC receptors (i.e., OGR1, GPR4, G2A, and GPR12). The SPC-induced proliferation and increase in [Ca(2+)](i) were sensitive to pertussis toxin (PTX) and the phospholipase C (PLC) inhibitor U73122, suggesting that PTX-sensitive G proteins, Gi or Go, and PLC are involved in SPC-induced proliferation. In addition, SPC treatment induced the phosphorylation of c-Jun and extracellular signal-regulated kinase, and SPC-induced proliferation was completely prevented by pretreatment with the c-Jun N-terminal kinase (JNK)-specific inhibitor SP600125 but not with the MEK-specific inhibitor U0126. Furthermore, the SPC-induced proliferation and JNK activation were completely attenuated by overexpression of a dominant negative mutant of JNK2, and the SPC-induced activation of JNK was inhibited by pretreatment with PTX or U73122. Treatment of hADSCs with lysophosphatidic acid (LPA) receptor antagonist, Ki16425, had no impact on the SPC-induced increase in [Ca(2+)](i). However, SPC-induced proliferation was partially, but significantly, attenuated by pretreatment of the cells with Ki16425.These results indicate that SPC stimulates the proliferation of hADSCs through the Gi/Go-PLC-JNK pathway and that LPA receptors may be responsible in part for the SPC-induced proliferation.  相似文献   

17.
目的探讨全反式维甲酸(RA)与音猬因子(Shh)诱导人骨髓间充质干细胞向神经干细胞乃至运动神经元方向分化过程中Nestin与Hb9的表达变化情况。方法采用传至第3代的人骨髓间充质干细胞,经含有RA与Shh的诱导液处理后,应用免疫细胞化学及荧光定量PCR方法分析Nestin与Hb9表达的变化情况。结果人骨髓间充质干细胞经过RA与Shh诱导后Nestin与Hb9的表达明显高于未加RA与Shh的对照组及空白组。结论 hBMSC具有向神经干细胞乃至运动神经元方向分化的潜能,RA与Shh可以在体外诱导hBMSC定向向该方向分化。  相似文献   

18.
Poor viability of transplanted mesenchymal stem cells (MSCs) in the infracted heart has limited their therapeutic efficacy in cardiac repair after myocardial infarction. We previously demonstrated that hypoxia and serum deprivation (hypoxia/SD) induced mitochondria‐dependent apoptosis in MSCs, while lysophosphatidic acid (LPA) could almost completely block this apoptotic process. However, the role of endoplasmic reticulum (ER) stress and its upstream signaling events in hypoxia/SD‐induced MSC apoptosis remain largely unknown. Here we found that hypoxia/SD‐induced MSC apoptosis was associated with ER stress, as shown by the induction of CHOP expression and procaspase‐12 cleavage, while the effects were abrogated by LPA treatment, suggesting ER stress is also a target of LPA. Furthermore, hypoxia/SD induced p38 activation, inhibition of which resulted in decreases of apoptotic cells, procaspase‐12 cleavage and mitochondrial cytochrome c release that function in parallel in MSC apoptosis. Unexpectedly, p38 inhibition enhanced hypoxia/SD‐induced CHOP expression. Interestingly, p38 activation, a common process mediating various biological effects of LPA, was inhibited by LPA in this study, and the regulation of p38 pathway by LPA was dependent on LPA1/3/Gi/ERK1/2 pathway‐mediated MKP‐1 induction but independent of PI3K/Akt pathway. Collectively, our findings indicate that ER stress is a target of LPA to antagonize hypoxia/SD‐induced MSC apoptosis, and the modulation of mitochondrial and ER stress‐associated apoptotic pathways by LPA is at least partly dependent on LPA1/3/Gi/ERK/MKP‐1 pathway‐mediated p38 inhibition. This study may provide new anti‐apoptotic targets for elevating the viability of MSCs for therapeutic potential of cardiac repair. J. Cell. Biochem. 111: 811–820, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The bioactive lysophospholipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) have diverse effects on the developing nervous system and neural progenitors, but the molecular basis for their pleiotropic effects is poorly understood. We previously defined LPA and S1P signaling in proliferating human neural progenitor (hNP) cells, and the current study investigates their role in neuronal differentiation of these cells. Differentiation in the presence of LPA or S1P significantly enhanced cell survival and decreased expression of neuronal markers. Further, the LPA receptor antagonist Ki16425 fully blocked the effects of LPA, and differentiation in the presence of Ki16425 dramatically enhanced neurite length. LPA and S1P robustly activated Erk, but surprisingly both strongly suppressed Akt activation. Ki16425 and pertussis toxin blocked LPA activation of Erk but not LPA inhibition of Akt, suggesting distinct receptor and G-protein subtypes mediate these effects. Finally, we explored cross talk between lysophospholipid signaling and the cytokine leukemia inhibitory factor (LIF). LPA/S1P effects on neuronal differentiation were amplified in the presence of LIF. Similarly, the ability of LPA/S1P to regulate Erk and Akt was impacted by the presence of LIF; LIF enhanced the inhibitory effect of LPA/S1P on Akt phosphorylation, while LIF blunted the activation of Erk by LPA/S1P. Taken together, our results suggest that LPA and S1P enhance survival and inhibit neuronal differentiation of hNP cells, and LPA1 is critical for the effect of LPA. The pleiotropic effects of LPA may reflect differences in receptor subtype expression or cross talk with LIF receptor signaling.  相似文献   

20.
It is essential to characterize the cellular properties of mesenchymal stem cell populations to maintain quality specifications and control in regenerative medicine. Biofunctional materials have been designed as artificial matrices for the stimulation of cell adhesion and specific cellular functions. We have developed recombinant maltose-binding protein (MBP)-fused proteins as artificial adhesion matrices to control human mesenchymal stem cell (hMSC) fate by using an integrin-independent heparin sulfate proteoglycans-mediated cell adhesion. In this study, we characterize cell adhesion-dependent cellular behaviors of human adipose-derived stem cells (hASCs) and human bone marrow stem cells (hBMSCs). We used an MBP-fused basic fibroblast growth factor (MF)-coated surface and fibronectin (FN)-coated surface to restrict and support, respectively, integrin-mediated adhesion. The cells adhered to MF exhibited restricted actin cytoskeleton organization and focal adhesion kinase phosphorylation. The hASCs and hBMSCs exhibited different cytoplasmic projection morphologies on MF. Both hASCs and hBMSCs differentiated more dominantly into osteogenic cells on FN than on MF. In contrast, hASCs differentiated more dominantly into adipogenic cells on MF than on FN, whereas hBMSCs differentiated predominantly into adipogenic cells on FN. The results indicate that hASCs exhibit a competitive differentiation potential (osteogenesis vs. adipogenesis) that depends on the cell adhesion matrix, whereas hBMSCs exhibit both adipogenesis and osteogenesis in integrin-mediated adhesion and thus hBMSCs have noncompetitive differentiation potential. We suggest that comparing differentiation behaviors of hMSCs with the diversity of cell adhesion is an important way to characterize hMSCs for regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号