首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cotton aphid, Aphis gossypii, has a worldwide distribution and causes damage to numerous economically important crops. The bacterial symbionts associated with cotton aphids, sampled mainly from malvaceous and cucurbitaceous plants within Japan and Australia, were characterised using molecular profiling approaches. The goal was to document the aphid symbionts present and determine if patterns of microbial diversity are consistent with the existence of host plant related cryptic species in A. gossypii. The bacterial profiles of the aphids are diverse and reflect local geography more than host plant use.  相似文献   

2.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

3.
1. The consequences to plants of ant–aphid mutualisms, particularly those involving invasive ants, are poorly studied. Ant–aphid mutualisms may increase or decrease plant fitness depending on the relative cost of herbivory by ant‐tended aphids versus the relative benefit of increased ant suppression of other (non‐aphid) herbivores. 2. We conducted field and greenhouse experiments in which we manipulated the presence and absence of cotton aphids (Aphis gossypii) on cotton plants to test the hypothesis that a mutualism between cotton aphids and an invasive ant, the red imported fire ant (Solenopsis invicta), benefits cotton plants by increasing fire ant suppression of caterpillars. We also manipulated caterpillar abundance to test whether the benefit of the mutualism varied with caterpillar density. 3. We found that more fire ants foraged on plants with cotton aphids than on plants without cotton aphids, which resulted in a significant reduction in caterpillar survival and caterpillar herbivory of leaves, flower buds, and bolls on plants with aphids. Consequently, cotton aphids indirectly increased cotton reproduction: plants with cotton aphids produced 16% more bolls, 25% more seeds, and 10% greater seedcotton mass than plants without aphids. The indirect benefit of cotton aphids, however, varied with caterpillar density: the number of bolls per plant at harvest was 32% greater on plants with aphids than on plants without aphids at high caterpillar density, versus just 3% greater at low caterpillar density. 4. Our results highlight the potential benefit to plants that host ant–hemipteran mutualisms and provide the first experimental evidence that the consequences to plants of an ant–aphid mutualism vary at different densities of non‐aphid herbivores.  相似文献   

4.
The effects of two aphidophagous predators, the larvae of Chrysoperla carnea and the adults of Adalia bipunctata, on the spread of Cucurbit aphid‐borne yellows virus (CABYV) transmitted by the cotton aphid Aphis gossypii were studied under semi‐field conditions. Aphids and natural enemies were released inside insect‐proof cages with a CABYV‐infected cucumber plant placed in the centre of the cage and surrounded by 48 healthy cucumber seedlings. The spatiotemporal dynamics of the virus and vector were evaluated in the short (7 days) and long term (14 days) in the presence and absence of each predator. The spatial analysis by distance indices methodology, together with other indices measuring the dispersal around a single focus, was used to assess the spatial pattern and the degree of association between the virus and vector. The presence of C. carnea larvae and A. bipunctata adults induced A. gossypii dispersal after 14 days but not after 7 days. The reduction of the initial aphid population established in the plant located in the centre of each cage was always higher for C. carnea than for A. bipunctata. There was some evidence that the natural enemies affected the spread of CABYV, though more so for C. carnea than for A. bipunctata. This study suggests an influence of both predators on the spread of the aphid, mainly in the long term, but only weak effect of predators in the spread of the viral disease was demonstrated.  相似文献   

5.
Although distinct host specialization is observed for the cotton-melon aphid (Aphis gossypii Glover) on cotton and cucurbit plants, it is still ambiguous whether the specialization is altered by experience on a novel host plant. Here the performance of cotton and cucurbit-specialized aphids, A. gossypii on novel host plants was studied by a host-selection test and by the life-table method. The two host-specialized aphids cannot survive and establish populations after reciprocal host transfers. They have ability to recognize the host plants on which they were reared, and escape behavior from novel hosts was observed. Interestingly, the cotton and cucurbit-specialized aphids survive and reproduce normally on hibiscus (Hibiscus syriacus), a main overwintering host plant, and host-fidelity of A. gossypii to cucurbit plants is altered by feeding and living experience on hibiscus, which confers the same capacity to use cotton and cucumber on to the cucurbit-specialized population, but host-fidelity to cotton is not altered and the fitness of the cotton specialized population to cucumber is still poorer. A. gossypii from hibiscus has a significant preference for cotton to cucumber in the host-selection process, and none stays on cucumber more than 20 h after transfer. The results presented imply that cucurbit-specialized aphids might not return to an overwintering host plant (hibiscus) in wild fields, so host conservatism to cucurbit plants is maintained. The potential of cucurbit-specialized aphids of A. gossypii to use cotton plants, intermediated by experience on hibiscus, suggests that the specialized host-plant performance of phytophagous insects is not wholly conservative.  相似文献   

6.
The cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), is an important cotton pest in northern China, especially in the seedling stage of cotton. After large scale commercial use of transgenic Bt cotton, cotton aphids became one of the most important cotton pests. A 2‐year study was conducted to evaluate the role of four winter wheat varieties that were resistant or susceptible to wheat aphid, Sitobion avenae Fabricius (Homoptera: Aphididae), in conserving arthropod natural enemies and suppressing cotton aphids in a wheat–cotton relay intercropping system in northern China. The results indicated that wheat–cotton intercropping preserved and augmented natural enemies more than a monoculture of cotton. The density of natural enemies in cotton was significantly different among relay‐intercropping fields with different wheat varieties. The highest density of natural enemies and low cotton aphid populations were found in the treatment of cotton in relay intercropped with the wheat variety Lovrin10, which is susceptible to wheat aphid. The lowest density of predators and parasitoids associated with high cotton aphid populations were found with the wheat variety KOK1679, which is resistant to wheat aphid. The results showed that wheat varieties that are susceptible or moderately resistant to wheat aphid might reduce cotton aphids more effectively than an aphid‐resistant variety in the intercropping system by enhancing predators to suppress cotton aphids during the cotton seedling stage.  相似文献   

7.
Abstract: Fertilization levels for ornamental crops may influence pest population dynamics, crop quality, and pest management strategy. We examined the effect of fertilization on population growth and within‐plant distribution of melon or cotton aphid, Aphis gossypii Glover, on potted chrysanthemum, Dendranthema grandiflora (Tzvelev). In terms of pest management implications, we also investigated the effect of fertilization on the number of insecticide applications needed to control A. gossypii on potted chrysanthemum. Population growth rate of A. gossypii increased with fertilization levels from 0 to 38 ppm N and reached a plateau from 38 to 488 ppm N. Increased fertilization beyond 38 ppm N, 10% of the commercial standard, did not result in higher aphid number. Aphids responded to nutrient availability of plants by distributing themselves in areas with higher level of nitrogen. More aphids were found in the apical and middle strata of the plants than the basal stratum, which had the lowest nitrogen content. Leaf nitrogen content increased with increased fertilization level and was consistently higher in the apical and middle strata than the basal stratum. Increased fertilization from 0 to 375 ppm N did not result in higher number of insecticide applications. All three insecticides (bifenthrin, kinoprene or pymetrozine) were effective in keeping the aphid infestation below a pre‐determined level, five aphids per plant, but pymetrozine required the least number of applications. For chrysanthemum, a fast‐growing crop and heavy utilizer of nitrogen, increased fertilization shortened the time to flowering, which would allow growers to harvest their crop sooner and reduce the time for aphid population growth. Reduction in time to harvest could result in significant reduction of insecticide usage by reducing the time for aphid population growth. As a result, high fertilization together with minimal runoff may be a useful tactic to an integrated pest management (IPM) programme for managing A. gossypii on potted chrysanthemums.  相似文献   

8.
Erratum     
Abstract: Fertilization levels for ornamental crops may influence pest population dynamics, crop quality, and pest management strategy. We examined the effect of fertilization on population growth and within‐plant distribution of melon or cotton aphid, Aphis gossypii Glover, on potted chrysanthemum, Dendranthema grandiflora (Tzvelev). In terms of pest management implications, we also investigated the effect of fertilization on the number of insecticide applications needed to control A. gossypii on potted chrysanthemum. Population growth rate of A. gossypii increased with fertilization levels from 0 to 38 ppm N and reached a plateau from 38 to 488 ppm N. Increased fertilization beyond 38 ppm N, 10% of the commercial standard, did not result in higher aphid number. Aphids responded to nutrient availability of plants by distributing themselves in areas with higher level of nitrogen. More aphids were found in the apical and middle strata of the plants than the basal stratum, which had the lowest nitrogen content. Leaf nitrogen content increased with increased fertilization level and was consistently higher in the apical and middle strata than the basal stratum. Increased fertilization from 0 to 375 ppm N did not result in higher number of insecticide applications. All three insecticides (bifenthrin, kinoprene or pymetrozine) were effective in keeping the aphid infestation below a pre‐determined level, five aphids per plant, but pymetrozine required the least number of applications. For chrysanthemum, a fast‐growing crop and heavy utilizer of nitrogen, increased fertilization shortened the time to flowering, which would allow growers to harvest their crop sooner and reduce the time for aphid population growth. Reduction in time to harvest could result in significant reduction of insecticide usage by reducing the time for aphid population growth. As a result, high fertilization together with minimal runoff may be a useful tactic to an integrated pest management (IPM) programme for managing A. gossypii on potted chrysanthemums.  相似文献   

9.
10.
Aphis gossypii is the main virus vector in muskmelon crops. The melon gene Vat confers resistance to non‐persistent virus transmission by this aphid. The mechanism of this resistance is not well understood, but no relationship has been detected between resistance and the probing behaviour of aphids on resistant plants. Results presented here suggest that temporary blockage of aphid stylet tips preventing virus particle release may explain the resistance conferred by Vat gene. We performed experiments in which viruliferous aphids were allowed to probe different sequences of resistant (Vat‐bearing) and/or susceptible melon plants. The results demonstrated that A. gossypii inoculates Cucumber mosaic virus (CMV) efficiently in susceptible plants having previously probed resistant plants, showing that the resistance mechanism is reversible. Furthermore, the infection rate obtained for susceptible plants was the same (25%) regardless of whether the transmitting aphid had come directly from the CMV source or had subsequently probed on resistant plants. This result suggests that virus is not lost from stylet to plant during probing of resistant plants, supporting the temporary blockage hypothesis. We also found that the ability of Myzus persicae to transmit CMV is noticeably reduced after probing on resistant plants, providing evidence that this aphid species also responds to the presence of the Vat gene. Finally, we also found that in probes immediately after virus acquisition M. persicae inoculates resistant plants with CMV more efficiently than susceptible plants, perhaps because the Vat gene product induces increased salivation by this aphid.  相似文献   

11.
Energy budgets of larval stages of the Chinese green lacewing, Chrysopa sinica (Tjeder) (Neuroptera: Chrysopidae) were determined under laboratory conditions at photo‐period of 14:10 L:D, 27 ± 1°C and 75%± 2% RH. The energy used as ingestion, assimilation, respiration, productivity and feces was constructed for each developmental stage. In addition, under these experimental conditions, the potential of C. sinica as a biological control agent was evaluated according to the ingestion by this predator and the energy content of cotton aphid, Aphis gossypii (Glover) (Homoptera: Aphididae). The larval stage of C. sinica was able to consume 1281.4 1‐day‐old aphids, 1018.7 2‐day‐old aphids, 626.9 3‐day‐old aphids, 393.5 4‐day‐old aphids, 312.1 5‐day‐old aphids or 203.5 9‐day‐old aphids, respectively. No significant difference was detected between the estimated number of aphids consumed by the lacewings using energetic methods and the actual number of aphids consumed by the lacewings in this experiment. Our results showed that C. sinica is an important natural enemy of the cotton aphid, and energetic methods are very useful to quantify biological control efficacy of natural enemies.  相似文献   

12.
The melon aphid, Aphis gossypii Glover (Hem., Aphididae), is one of the most important pests of cucumber throughout the world. This aphid has a short generation time and high fecundity that result in an enormous reproductive potential, especially in cucumber‐growing greenhouses. Vermicomposts, which are produced by exploiting interactions between earthworms and microorganisms, may enhance plant growth and plant resistance against some pests and disease. In this study, the effects of vermicompost and cucumber cultivar (Cucumis sativus L.) on infestation levels with A. gossypii were evaluated. We conducted a factorial experiment with two cucumber cultivars (Royal and Storm) and five concentrations of vermicompost in the soil, including 0% (control), 10%, 20%, 30% and 50%, employing a randomized complete block design with four replicates. The experiment was conducted in a growth chamber at 25 ± 2°C, 65 ± 10% RH and a photoperiod of 14 L: 10 D h. The number of aphids was counted 3, 5, 7, 9, 12, 15, 18 and 21 days after infestation of cucumber seedlings by aphids. We found that in all vermicompost‐amended treatments, aphid numbers were lower than when plants were grown in soil without any vermicompost. The highest and lowest aphid counts occurred in the control treatment on cucumbers of the Royal cultivar and in the 30% and 50% vermicompost treatments on the storm cultivar, respectively. Overall, our study showed that the application of vermicompost has a high potential for reducing A. gossypii populations in cucumber cultures.  相似文献   

13.
Phytophagous insects with wide host ranges often exhibit host‐associated genetic structure. We used microsatellite analysis to assess the population structure of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), a serious pest on many economically important crops worldwide. We sampled aphids from five host plant species in Iran and detected strong population subdivision, with an overall multilocus FST of 0.191. The matrix of pairwise FST values indicated that differentiation between populations collected from different hosts was significantly stronger than between populations from the same hosts. Host‐associated differentiation was further supported by Bayesian clustering analyses, which grouped all samples from cotton together with aubergine, and all samples from cucumber together with pumpkin and hibiscus. This adds to the growing body of evidence that many seemingly generalist aphids are in fact an assemblage of host‐specialized lineages. Although we detected a clear genetic signature of clonal reproduction, the genotypic diversity of A. gossypii in Iran is much higher than in other parts of the world. Particularly samples from cotton exhibited a surprisingly high genotypic diversity, suggesting that many lineages on this host are cyclical parthenogens that engage in regular bouts of sexual reproduction.  相似文献   

14.
Cotton aphid (Aphis gossypii G.) populations seemed to fluctuate over the past years in cotton (Gossypium hirsutum L.) perhaps as a result of excessive use of insecticides for controlling more problematic pests. Contradictory plant responses have been observed depending upon the aphid/plant system, and it is unclear if cotton aphids, abiotic stress or both are responsible for cotton yield reduction in aphid-infested fields. Our objectives were to investigate the diurnal changes in the physiology of cotton leaves following aphid herbivory, and the diurnal pattern of aphid feeding. The experiment was conducted in a growth chamber using the cotton cultivar ‘Stoneville 474’. Leaves of the same age and size were infested with wingless adults plus nymphs. Cotton aphids were allowed to increase in numbers without restriction for 9 days, after which the amounts of carbohydrates in aphid-honeydew, and the number of honeydew droplets excreted per aphid were measured. Photosynthetic rates, dark respiration rates and foliar non-structural carbohydrates were measured. The amount of individual carbohydrates found in the honeydew was significantly different with time. The total amount of carbohydrates excreted per aphid within a 24-h period averaged 2.5 μg. The number of honeydew droplets excreted per aphid varied significantly from time to time period. Cotton aphids did not significantly alter photosynthesis or respiration rates or non-structural carbohydrates on leaves. Aphid populations of approximately 300 per leaf on the 9th day of infestation did not appear to significantly alter the physiology of cotton leaves.  相似文献   

15.
This study focused on three species of enemies, the parasitoid wasp Lysiphlebus japonicus Ashmead (Hymenoptera: Aphidiidae), the ladybird Scymnus posticalis Sicard (Coleoptera: Coccinellidae) and the predatory gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae), all of which are able to exploit aphids attended by ants. I experimentally evaluated the effects of prey aphid species on the abundance of each of the three enemy species in ant‐attended aphid colonies on citrus. The aphids compared were Aphis gossypii Glover versus Aphis spiraecola Patch in late spring, and Toxoptera citricidus (Kirkaldy) versus A. spiraecola in late summer (all, Hemiptera: Aphididae). Colonies of the three aphid species were attended by the ant Pristomyrmex punctatus Smith (Hymenoptera: Formicidae). The initial number of attending ants per individual aphid did not differ significantly between the colonies of the two aphid species compared in each season. Between A. gossypii and A. spiraecola, there was no significant difference in the number of mummies formed by the parasitoid or foraging larvae of each of the two predators per aphid colony. A significant difference was detected between T. citricidus and A. spiraecola for each of the three enemy species, with a far greater number of L. japonicus mummies in T. citricidus colonies and distinctly more larvae of each of the two predators in A. spiraecola colonies. Thus, the abundance of each of the three enemy species in ant‐attended aphid colonies was significantly influenced by the species of the prey aphids, with the three enemies showing different responses to the three aphid species.  相似文献   

16.
The cotton aphid, Aphis gossypii Glover, predation rate of convergent lady beetle, Hippodamia convergens Guerin‐Meneville, was determined by assigning a single predator randomly to each of four prey density treatments in the laboratory. Prey densities included 25, 50, 100, and 200 aphids per Petri dish arena. Predation response was recorded at 1, 4, 8, 16, 24, and 48 h after assigning predators to their prey treatments. Rate of consumption increased through time, with all 25 aphids consumed during the first 4 h of the experiment. At the highest density, adult lady beetle consumed on average 49, 99, 131, 163, 183, and 200 aphids within 1, 4, 8, 16, 24 and 48 h, respectively. Predators showed a curvilinear feeding response in relation to total available time, indicating that convergent lady beetles have the potential to suppress larger populations of aphids through continuous feeding by regulating their predation efficiency during feeding. The analysis of age‐specific mortality in absence of prey revealed that lady beetles could survive for an extended period of time (more than 2 weeks) without prey. The ability of a predator to survive without prey delays or prevents the rebound of pest populations that is a significant factor in natural biological control. A two‐year field sampling of 10 cotton arthropod predator species showed that spiders (27%) were the most dominant foliage dwelling predators in the Texas High Plains cotton followed by convergent lady beetles (23.5%), hooded beetles (13.5%), minute pirate bugs (11%), green lacewings (9.5%), bigeyed bugs (7.5%), scymnus beetles (3%), soft‐winged flower beetles (2%), damsel bugs (1.5%), and assassin bugs (1.5%). A field cage study showed that one H. convergens adult per plant released at prey density of one aphid per leaf kept the aphid population below economic threshold for the entire growing season.  相似文献   

17.
In August 1994 and 1995 classical biological control releases were made in cotton in the San Joaquin Valley, California, with an Arkansas strain of the entomopathogenic fungus, Neozygites fresenii, a pathogen of the cotton aphid, Aphis gossypii. Pre-release samples in both years indicated that N. fresenii was not naturally present in A. gossypii populations in the San Joaquin Valley. Two release methods were compared: dried N. fresenii-infected cotton aphid “cadavers” and chamber inoculation of A. gossypii. Both methods were successful in introducing N. fresenii to cotton aphids in California; however, higher prevalence of fungal infection resulted with the cadaver treatments. N. fresenii persisted and spread in the aphid population until early October 1994 and late September 1995. The highest mean percentage infection in the cadaver treatment in 1994 reached a level (14%) considered imminent for epizootics (12–15%). The use of predator exclusion cages resulted in higher N. fresenii prevalences.  相似文献   

18.
Abstract Effects of CO2 level (ambient vs. elevated) on the interactions among three cotton (Gossypium hirsutum) genotypes, the cotton aphid (Aphis gossypii Glover), and its hymenoptera parasitoid (Lysiphlebia japonica Ashrnead) were quantified. It was hypothesized that aphid‐parasitoid interactions in crop systems may be altered by elevated CO2, and that the degree of change is influenced by plant genotype. The cotton genotypes had high (M9101), medium (HZ401) and low (ZMS13) gossypol contents, and the response to elevated CO2 was genotype‐specific. Elevated CO2 increased the ratio of total non‐structural carbohydrates to nitrogen (TNC: N) in the high‐gossypol genotype and the medium‐gossypol genotype. For all three genotypes, elevated CO2 had no effect on concentrations of gossypol and condensed tannins. A. gossypii fitness declined when aphids were reared on the high‐gossypol genotype versus the low‐gossypol genotype under elevated CO2. Furthermore, elevated CO2 decreased the developmental time of L. japonica associated with the high‐gossypol genotype and the low‐gossypol genotype, but did not affect parasitism or emergence rates. Our study suggests that the abundance of A. gossypii on cotton will not be directly affected by increases in atmospheric CO2. We speculate that A. gossypii may diminish in pest status in elevated CO2 and high‐gossypol genotype environments because of reduced fitness to the high‐gossypol genotype and shorter developmental time of L. japonica.  相似文献   

19.
The simple gaseous compound ethylene (ET) has long been recognized as a common component of plant responses to insect feeding and pathogen attack. However, it is presently uncertain whether it plays a role in host–plant resistance to piercing–sucking insects such as aphids. In these experiments, we investigated the expression of key ET‐associated genes in resistant and susceptible interactions in two model systems: the tomato‐MiMacrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae: Macrosiphini) system and the melon‐virus aphid transmission gene (Vat)‐Aphis gossypii Glover (Hemiptera: Aphididiae: Aphidini) system. We examined expression patterns of genes associated with ET synthesis, perception, signal transduction, and downstream response. When compared with control plants, plants infested with aphids showed marked differences in gene expression. In particular, ET signaling pathway genes and downstream response genes were highly upregulated in the resistant interaction between A. gossypii and Vat+, indicating ET may play a role in Vat‐mediated host–plant resistance. A key integrator between the ET and jasmonic acid pathways (Cm‐ERF1) showed the strongest response.  相似文献   

20.
Highly reflective white kaolin‐based particle film was sprayed on cotton, Gossypium hirsutum L. (Malvaceae), plots in south Texas during 2004 and 2005 to observe its effect on the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae). Populations of cotton aphids on the ventral surfaces of leaves in the kaolin‐treated plots were greater than in non‐treated control plots during both years. Alate cotton aphids were attracted less to white than to other pan trap colors, and parasitism by Lysiphlebus spec. (Hymenoptera: Aphidiidae) was either unaffected or greater in the kaolin‐treated plots, hence these two factors (color and parasitism) do not explain the increased infestations in the treated plots. However, mean temperatures on the ventral surfaces of kaolin‐treated cotton leaves were cooler than those of control leaves. The observed temperature difference where cotton aphids reside on cotton leaves is a potential reason for the greater infestations in the kaolin treatment plots. Our study demonstrates that applications of kaolin can exacerbate a pest infestation in cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号