首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradation of Reactive Blue 59 by isolated bacterial consortium PMB11   总被引:2,自引:0,他引:2  
Morphologically different, three bacterial strains, capable of decolorizing Reactive Blue 59 were isolated from dye effluent contaminated soil sample, collected from Ichalkaranji, India. The individual bacterial strains viz. Bacillus odysseyi SUK3, Morganella morganii SUK5 and Proteus sp. SUK7 decolorized Reactive Blue 59 (50 mg l(-1)) completely within 60, 30, 24 h, respectively, while the bacterial consortium PMB11 of these strains required 3 h for the complete decolorization. The decolorization was confirmed by UV-Vis spectroscopy. Further, the biodegradation of Reactive Blue 59 in to different metabolites was confirmed by High performance liquid chromatography and Fourier transform infrared spectroscopy analysis. Significant increase in the activity of aminopyrine N-demethylase (AND) in the individual as well consortium cells, obtained after decolorization showed involvement of AND in the decolorization process. Phytotoxicity studies, revealed the nontoxic nature of the degraded metabolites of Reactive Blue 59 indicating effectiveness of bacterial consortium PMB11 for the treatment of textile effluent containing Reactive Blue 59.  相似文献   

2.
A bacterial strain, CK3, with remarkable ability to decolorize the reactive textile dye Reactive Red 180, was isolated from the activated sludge collected from a textile mill. Phenotypic characterization and phylogenetic analysis of the 16S rDNA sequence indicated that the bacterial strain belonged to the genus Citrobacter. Bacterial isolate CK3 showed a strong ability to decolorize various reactive textile dyes, including both azo and anthraquinone dyes. Anaerobic conditions with 4 g l?1 glucose, pH = 7.0 and 32 °C were considered to be the optimum decolorizing conditions. Citrobacter sp. CK3 grew well in a high concentration of dye (200 mg l?1), resulting in approximately 95% decolorization extent in 36 h, and could tolerate up to 1000 mg l?1 of dye. UV–vis analyses and colorless bacterial cells suggested that Citrobacter sp. CK3 exhibited decolorizing activity through biodegradation, rather than inactive surface adsorption. It is the first time that a bacterial strain of Citrobacter sp. has been reported with decolorizing ability against both azo and anthraquinone dyes. High decolorization extent and facile conditions show the potential for this bacterial strain to be used in the biological treatment of dyeing mill effluents.  相似文献   

3.
The aim of the present study was to investigate the textile effluent degrading potential of an isolated bacterium, Proteus sp. SUK7. The strain had the capacity to decolorize Navy Blue Rx–containing textile effluent up to 83% within 96 h. The maximum decolorization was observed under static conditions at pH 7.0 and 30°C. Reduction in the chemical oxygen demand (COD) and biological oxygen demand (BOD) of textile effluent was observed after treatment with Proteus sp. SUK7. Induction in the activities of laccase and aminopyrine N-demethylase was observed after decolorization, which indicates involvement of these enzymes in the decolorization process. The presence of various inducers was also found to have a modulatory effect on enzyme activities and the decolorization process. Biodegradation was confirmed using various analytical techniques, such as ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR), gas chromatography–mass spectrometry (GC-MS), and high-performance liquid chromatography (HPLC). A phytotoxicity study was performed to confirm the nontoxic nature of the degradation metabolites.  相似文献   

4.
5.
通过稀释划线的方法,从土壤中分离到一株能降解刚果红的菌株(T1),从菌落和孢子形态来判断该菌为放线菌的链霉菌属。T1菌在含刚果红(100 mg.L-1)高氏液体培养基中培养6 d后,脱色率高达90%。对培养液进行200~800 nm波长扫描的结果表明,培养基中部分刚果红被T1菌降解,其余部分被菌体吸附。活菌体对染料的吸附效率比死菌体高。T1菌对刚果红的脱色主要是通过生物降解和菌体吸附作用来完成。  相似文献   

6.
The biological decolorization of the textile azo dye Reactive Red 2 was investigated using a mixed, mesophilic methanogenic culture, which was developed with mixed liquor obtained from a mesophilic, municipal anaerobic digester and enriched by feeding a mixture of dextrin/peptone as well as media containing salts, trace metals and vitamins. Batch decolorization assays were conducted with the unacclimated methanogenic culture and dye decolorization kinetics were determined as a function of initial dye, biomass, and carbon source concentrations. Dye decolorization was inhibited at initial dye concentrations higher than 100 mg l-1 and decolorization kinetics were described based on the Haldane model. The effect of long-term culture exposure to the reactive dye on decolorization kinetics, culture acclimation, as well as possible dye mineralization was tested using two reactors fed weekly for two years with an initial dye concentration of 300 mg l-1 and a mixture of dextrin/peptone. The maximum dye decolorization rate after a 2-year acclimation at an initial dye concentration of 300 mg l-1 was more than 10-fold higher as compared to that obtained with the unacclimated culture. Aniline and the o-aminohydroxynaphthalene derivative resulting from the reductive azo bond cleavage of the dye were detected, but further transformation(s) leading to dye mineralization were not observed. Reactive Red 2 did not serve as the carbon and energy source for the mixed culture, and dye decolorization was sustained by the continuous addition of dextrin and peptone. Thus, biological decolorization of reactive azo dyes is feasible under conditions of low redox potential created and maintained in overall methanogenic systems, but supply of a biodegradable carbon source is necessary.  相似文献   

7.
A recombinant Escherichia coli strain (E. coli NO3) containing genomic DNA fragments from azo-reducing wild-type Pseudomonas luteola strain decolorized a reactive azo dye (C.I. Reactive Red 22) at approx. 17 mg dye h–1 g cell. The ability to decolorize the azo dye probably did not originate from the plasmid DNA. Acclimation in azo-dye-containing media gave a nearly 10% increase in the decolorization rate of E. coli NO3. Growth with 1.25 g glucose l–1 completely stopped the decolorization activity. When the decolorization metabolites from E. coli NO3 were analyzed by HPLC and MS, the results suggested that decolorization of the azo dye may be due to cleavage of the azo bond.  相似文献   

8.
The 16S rRNA sequence analysis and biochemical characteristics were confirmed that the isolated bacterium is Pseudomonas sp. LBC1. The commonly used textile dye, Direct Brown MR has been used to study the fate of biodegradation. Pseudomonas sp. LBC1 showed 90% decolorization of Direct Brown MR (100 mg/L) and textile industry effluent with significant reduction in COD and BOD. The optimum condition for decolorization was 7.0 pH and 40°C. Significant increase in a activity of extracellular laccase suggested their possible involvement in decolorization of Direct Brown MR. Biodegradation metabolites viz. 3,6-dihydroxy benzoic acid, 2-hydroxy-7-aminonaphthol-3-sulfonic acid, and p-dihydroperoxybenzene were identified on the basis of mass spectra and using the 1.10 beta Shimadzu NIST GC–MS library. The Direct Brown MR and textile industry effluent were toxic to Sorghum bicolor and Vigna radiata plants as compared to metabolites obtained after decolorization. The Pseudomonas sp. LBC1 could be useful strain for decolorization and detoxification of textile dyes as well as textile industry effluent.  相似文献   

9.
The diazo reactive dye Navy blue HE2R (50 mg/L) was decolorized up to 91.2% within 48 h at static condition by the Exiguobacterium sp. isolated from the dyestuff contaminated soil, collected from the textile industrial area Solapur, India. It showed ability to decolorize seven different reactive textile dyes. Maximum decolorization was observed at 30°C and pH 7. The presence and significant increase in the activity of enzymes lignin peroxidase, laccase, and azoreductase indicated prominent role of these enzymes in the decolorization of Navy blue HE2R. The degradation metabolites were analyzed by UV-Vis spectroscopy, TLC, HPLC, and FTIR spectroscopy. A possible pathway for biodegradation of this diazo reactive dye was proposed with the help of GC-MS analysis. The phytotoxicity studies confirmed the environmentally safe nature of degradation products.  相似文献   

10.
In the present study mixed cultures that could grew in the molasses media were isolated from textile dye effluent and its decolorization activity was studied in a batch system under anaerobic conditions, in order to determine the optimal conditions required for the highest decolorization activity. The optimum pH value for decolorization was determined as 8 for all the dyes tested. In the experiment with pH 8 dye decolorizations by mixed cultures were investigated at about 96.2–1031.3 mg l−1 initial dye concentrations. The highest dye removal rates of mixed cultures were 94.9% for Reactive Red RB, 91.0% for Reactive Black B and 63.6% for Remazol Blue at 953.2, 864.9 and 1031.3 mg l−1 initial dye concentrations respectively within 24 h incubation period. When the Reactive Red RB was used, approximately 82–98% total color removal was obtained at between 96.2 and 953.2 mg l−1 initial dye concentrations after 12 h of incubation at 35 °C. These results show that our enriched mixed cultures have the potential to serve as an excellent biomass for the use in reactive dye removal from wastewaters under anaerobic conditions.  相似文献   

11.
The 16S rRNA sequence and biochemical characteristics revealed the isolated organism as Pseudomonas sp. SU-EBT. This strain showed 97 and 90% decolorization of a recalcitrant dye, Congo red (100 mg l−1) and textile industry effluent with 50% reduction in COD within 12 and 60 h, respectively. The optimum pH and temperature for the decolorization was 8.0 and 40°C, respectively. Pseudomonas sp. SU-EBT was found to tolerate the dye concentration up to 1.0 g l−1. Significant induction in the activity of intracellular laccase suggested its involvement in the decolorization of Congo red. The metabolites formed after decolorization of Congo red, such as p-dihydroxy biphenyl, 8-amino naphthol 3-sulfonic acid and 3-hydroperoxy 8-nitrosonaphthol were characterized using FTIR and GC–MS. Phytotoxicity study revealed nontoxic nature of the degradation metabolites to Sorghum bicolor, Vigna radiata, Lens culinaris and Oryza sativa plants as compared to Congo red and textile industry effluent. Pseudomonas sp. SU-EBT decolorized several individual textile dyes, dye mixtures and textile industry effluent, thus it is a useful strain for the development of effluent treatment methods in textile processing industries.  相似文献   

12.
Dyeing effluents have become a vital source of water pollution. Due to the xenobiotic properties and toxicity to all life forms including humans, removal of undesirable color and associated toxicity is crucial. In this study, five dye decolorizing bacteria were isolated from dyeing effluent using selective enrichment culture in Bushnell-Haas (BH) medium amended with co-substrate (i.e. glucose, yeast extract) and 100?mg?L?1 of each commercially available reactive dyes viz. Novacron Orange FN-R, Novacron Brilliant Blue FN-R, Novacron Super Black G, Bezema Yellow S8-G and Bezema Red S2-B. The isolated bacteria were identified and assigned as Neisseria sp., Vibrio sp., Bacillus sp., Bacillus sp. and Aeromonas sp. based on their phenotypic (cultural, morphological, physiological and biochemical characteristic) observation. The dye decolorization efficiency was estimated spectrophotometrically up to 6?days of static incubation at 37?°C and observed that all of the isolates were unable to induce decolorization in absence of co-substrate. In case of monoculture, decolorization percentage varies from no visible decolorization (Bezema Red S2-B by Ek-5) to highest 90% decolorization (Novacron Brilliant Blue FN-R by Ek-13) whereas the decolorization percentage of bacterial consortium varies from 65% (Bezema Yellow S8-G) to 90% (Novacron Brilliant Blue FN-R and Novacron Super Black G). The study outlines the co-substrates mediated decolorization process where bacterial consortium proved as efficient dye decolorizer than that of the monocultures. This finding confers possibility of using novel microbial consortium for biological treatment of disreputable dyeing effluents.  相似文献   

13.
Presence of heavy metals including lead (Pb) in the textile effluents is a crucial factor affecting the growth and potential of the dye decolorizing bacterial strains. This work was planned to isolate and characterize a bacterial strain exhibiting the potential to decolorize a range of azo dyes as well as the resistance to Pb. In this study, several Pb tolerant bacteria were isolated from effluents of textile industry. These bacterial isolates were screened for their potential of decolorizing the reactive red-120 (RR120) azo dye with presence of Pb (50 mg L?1). The most efficient isolate was further characterized for its potential to resist Pb and decolorize different azo dyes under varying cultural and incubation conditions. Out of the total 82 tested bacterial isolates, 30 bacteria were found to have varying potentials to resist the presence of lead (Pb) and carry out decolorization of an azo dye reactive red-120 (RR120) in the medium amended with Pb (50 mg L?1). The most efficient selected bacterium, Pseudomonas aeruginosa strain HF5, was found to show a good potential not only to grow in the presence of considerable concentration of Pb but also to decolorize RR120 and other azo dyes in the media amended with Pb. The strain HF5 completely (>?90%) decolorized RR120 in mineral salt medium amended with 100 mg L?1 of Pb and 20 g L?1 NaCl. This strain also considerably (>?50%) decolorized RR120 up to the presence of 2000 mg L?1 of Pb and 50 g L?1 of NaCl but with reduced rate. The optimal decolorization of RR120 by HF5 was achieved when the pH of the Pb amended (100 mg L?1) mineral salt media was adjusted at 7.5 and 8.5. Interestingly, this strain also showed the tolerance to a range of metal ions with varying MIC values. The Pseudomonas aeruginosa strain HF5 harboring the unique potentials to grow and decolorize the azo dyes in the presence of Pb is envisaged as a potential bioresource for devising the remediation strategies for treatment of colored textile wastewaters loaded with Pb and other heavy metal ions.  相似文献   

14.
Four textile azo dyes, Joyfix Red, Remazol Red, Reactive Red and Reactive Yellow, were studied for decolorization. Of nineteen soil bacterial isolates, two novel strains were found to highly decolorize Joyfix Red and were identified as Lysinibacillus sphaericus (KF032717) and Aeromonas hydrophila (KF032718) through 16S rDNA analysis. Laccase and Azoreductase enzyme modeling and enzyme–dye interaction performed using Schrödinger Suite imitated decolorization percentage. Results based on cumulative Glide score (Dry laboratory) and decolorization percentage of the other three dyes based on ultraviolet–visible (UV–vis) spectroscopy (Wet laboratory) were reliable. Biodegradation of Joyfix Red was confirmed by high-performance liquid chromatography (HPTLC) elution profile which showed four peaks at 1.522, 1.800, 3.068 and 3.804 min with that of parent dye which showed single peak at 1.472 min. Fourier transform infrared spectroscopy (FT-IR) analysis supported the biotransformation of Joyfix Red. Gas chromatography–mass spectroscopy (GC–MS) analysis showed sodium (3E,5Z)-4-amino-6-hydroxyhexa-13,5-triene-2-sulfonate was formed as end product during biodegradation. From these findings, it can be inferred that enzyme and dye interaction studies can assist in examining decolorization efficiency of bacteria and its enzyme, thereby enhancing the bioremediation process by reducing preliminary lengthy wet laboratory screening. This is the first report of a combinatorial in silico cum in vitro approach and its validation for the bioremediation of wastewater containing these textile azo dyes.  相似文献   

15.
Decolorization of diazo dye Direct Red 81 by a novel bacterial consortium   总被引:1,自引:0,他引:1  
Summary Samples collected from various effluent-contaminated soils in the vicinities of dyestuff manufacturing units of Ahmedabad, India, were studied for screening and isolation of organisms capable of decolorizing textile dyes. A novel bacterial consortium was selected on the basis of rapid decolorization of Direct Red 81 (DR 81), which was used as model dye. The bacterial consortium exhibited 90% decolorization ability within 35 h. Maximum rate of decolorization was observed when starch (0.6 g l−1) and casein (0.9 g l−1) were supplemented in the medium. Decolorization of DR 81 was monitored by high performance thin layer chromatography, which indicated that dye decolorization was due to its degradation into unidentified intermediates. The optimum dye-decolorizing activity of the culture was observed at pH 7.0 and incubation temperature of 37 °C. Maximum dye-decolorizing efficiency was observed at 200 mg l−1 concentration of DR 81. The bacterial consortium had an ability to decolorize nine other structurally different azo dyes.  相似文献   

16.
Soil samples isolated from dye-contaminated sites were exploited for isolation of dye decolorizing microorganisms. A novel bacterial mixture, RkNb1, was selected based on its efficiency, showing maximum and faster decolorization of textile dyes. Seven bacterial strains were isolated and identified from the bacterial mixture as Ochrobactrum intermedium (HM480365), Ochrobactrum intermedium strain M16-10-4 (HM030758), Enterococcus faecalis (HM480367), Arthrobacter crystallopoietes (HM480368), Kocuria flavus (HM480369), Bacillus beijingensis (HM480370), and Citrobacter freundii (HM480371) by 16S rRNA gene sequence analysis. This bacterial mixture showed 98.17% decolorization of Reactive Violet 5 (400 mg L?1) within 8 h. The culture exhibited good decolorization ability at pH 8 and at a temperature of 37°C. Malt extract and peptone was found to enhance the decolorization rate of Reactive Violet 5. Plackett-Burman experimental design was used for elucidation of medium components affecting Reactive Violet 5 decolorization. Dye degradation products obtained during the course of decolorization were analyzed by high-performance thin-layer chromatography (HPTLC), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR). The potential of this bacterial mixture to decolorize Reactive Violet 5 dye from manufacturing industry effluent is to be carried out using appropriate bioreactors.  相似文献   

17.
Microbial biotechnologies for the decolorization of textile wastewaters have attracted worldwide attention because of their economic suitability and easiness in handling. However, the presence of high amounts of salts and metal ions in textile wastewaters adversely affects the decolorization efficiency of the microbial bioresources. In this regard, the present study was conducted to isolate salt tolerant bacterial strains which might have the potential to decolorize azo dyes even in the presence of multi-metal ion mixtures. Out of the tested 48 bacteria that were isolated from an effluent drain, the strain NA6 was found relatively more efficient in decolorizing the reactive yellow-2 (RY2) dye in the presence of 50 g L?1 NaCl. Based on the similarity of its 16S rRNA gene sequence and its position in a phylogenetic tree, this strain was designated as Proteus sp. NA6. The strain NA6 showed efficient decolorization (>90 %) of RY2 at pH 7.5 in the presence of 50 g L?1 NaCl under static incubation at 30 °C. This strain also had the potential to efficiently decolorize other structurally related azo dyes in the presence of 50 g L?1 NaCl. Moreover, Proteus sp. NA6 was found to resist the presence of different metal ions (Co+2, Cr+6, Zn+2, Pb+2, Cu+2, Cd+2) and was capable of decolorizing reactive dyes in the presence of different levels of the mixtures of these metal ions along with 50 g L?1 NaCl. Based on the findings of this study, it can be suggested that Proteus sp. NA6 might serve as a potential bioresource for the biotechnologies involving bioremediation of textile wastewaters containing the metal ions and salts.  相似文献   

18.
Citrobacter sp. strain KCTC 18061P was found to be able to decolorize textile plant effluent containing different types of reactive dyes. Effects of physico-chemical parameters, such as aeration, nitrogen source, glucose and effluent concentrations on the color removal of real dye effluent by this strain were investigated. The observed changes in the visible spectra indicated color removal by the absorption of dye to cells during incubation with the strain. This strain showed higher decolorization ability under aerobic than static culture conditions. With 1% glucose, this strain removed 70% of effluent color within 5 days. Decolorization was not significantly dependent on the nitrogen sources tested. Chemical oxygen demand (COD) and biological oxygen demand (BOD) were decreased in proportion to incubation times, and their removal rates were about 35% and 50%, respectively, at 7 days of culture.  相似文献   

19.
Mohanty S  Dafale N  Rao NN 《Biodegradation》2006,17(5):403-413
A two-stage anaerobic–aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent was used to degrade reactive black 5 dye (RB-5). The anaerobic step was studied in more detail by varying the dye concentration from 100 to 3000 mg l−1. The results showed that major decolorization was achieved during the anaerobic process. The time required for decolorization by > 90% increased as the concentration of the dye increased. It was also found that maintaining dissolved oxygen (DO) concentration below 0.5 mg l−1 and addition of a co-substrate viz., glucose, facilitates anaerobic decolorization reaction remarkably. An attempt was made to identify the metabolites formed in anaerobic process by using high performance liquid chromatography (HPLC) and UV–VIS spectrophotometry. A plate assay was performed for the detection of dominant decolorizing bacteria. Only a few bacterial colonies with high clearing zones (decolorization zones) were found. The results showed that under anaerobic condition RB-5 molecules were reduced and aromatic amines were generated. The aromatic amine metabolite was partly removed in subsequent aerobic bio-treatment. It was possible to achieve more than 90% decolorization and approximately 46% reduction in amine metabolite concentration through two-stage anaerobic–aerobic treatment after a reaction period of 2 days.  相似文献   

20.
一株高效广谱染料降解细菌的分离鉴定及脱色特性研究   总被引:2,自引:0,他引:2  
通过梯度驯化,从印染废水长期污染土壤中分离筛选出能以4种不同结构类型的染料(刚果红、美蓝、孔雀绿和活性艳蓝KN-R)为唯一碳源的菌株XSMR,根据其形态学特征和生理生化鉴定及16S rDNA序列分析,初步鉴定为无色杆菌属(Achromobacter sp.)的菌株。菌株XSMR对4种染料均具有强的脱色降解能力,且对染料脱色的同时,自身能够生长繁殖,培养24h菌体干重超过不加染料的对照。在振荡培养条件下对该菌株的脱色反应条件进行研究,结果表明,当刚果红、美蓝、孔雀绿及活性艳蓝KN-R的初始浓度分别小于200mg/L、200mg/L、150mg/L及150mg/L时,在pH7.5、温度35℃、接种量4%(V/V)条件下,接种菌株XSMR脱色14h对4种染料的脱色率均可达到98%以上。通过对降解产物的紫外-可见光谱分析,进一步证明了菌株XSMR能彻底降解染料。菌株XSMR对染料脱色的机理包括生物降解和菌株吸附两方面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号