首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.  相似文献   

2.
Bacillus thuringiensis ssp. israelensis (Bti) has been used worldwide for the control of dipteran insect pests. This bacterium produces several Cry and Cyt toxins that individually show activity against mosquitoes but together show synergistic effect. Previous work demonstrated that Cyt1Aa synergizes the toxic activity of Cry11Aa by functioning as a membrane-bound receptor. In the case of Cry toxins active against lepidopteran insects, receptor interaction triggers the formation of a pre-pore oligomer that is responsible for pore formation and toxicity. In this work we report that binding of Cry11Aa to Cyt1Aa facilitates the formation of a Cry11Aa pre-pore oligomeric structure that is capable of forming pores in membrane vesicles. Cry11Aa and Cyt1A point mutants affected in binding and in synergism had a correlative effect on the formation of Cry11Aa pre-pore oligomer and on pore-formation activity of Cry11Aa. These data further support that Cyt1Aa interacts with Cry11Aa and demonstrate the molecular mechanism by which Cyt1Aa synergizes or suppresses resistance to Cry11Aa, by providing a binding site for Cry11Aa that will result in an efficient formation of Cry11Aa pre-pore that inserts into membranes and forms ionic pores.  相似文献   

3.
Cry4Ba is a delta-endotoxin produced by Bacillus thuringiensis subsp. israelensis and Cyt2Aa2 is a cytolytic delta-endotoxin produced by B. thuringiensis subsp. darmstadiensis. Cry4Ba produced in Escherichia coli was toxic to Aedes aegypti larvae (LC(50)=140 ng ml(-1)) but virtually inactive to Culex quinquefasciatus larvae. Cyt2Aa2 expressed in E. coli exhibited moderate activity against A. aegypti and C. quinquefasciatus larvae with LC(50) values of 350 and 250 ng ml(-1), respectively. Co-expression of both toxins in E. coli dramatically increased toxicity to both A. aegypti andC. quinquefasciatus larvae (LC(50)=7 and 20 ng ml(-1), respectively). This is the first report to demonstrate that Cry4Ba and Cyt2Aa2 have high synergistic activity against C. quinquefasciatus larvae.  相似文献   

4.
Bacillus thuringiensis subsp. israelensis (Bti) produces at least four different crystal proteins that are specifically toxic to different mosquito species and that belong to two non-related family of toxins, Cry and Cyt named Cry4Aa, Cry4Ba, Cry11Aa and Cyt1Aa. Cyt1Aa enhances the activity of Cry4Aa, Cry4Ba or Cry11Aa and overcomes resistance of Culex quinquefasciatus populations resistant to Cry11Aa, Cry4Aa or Cry4Ba. Cyt1Aa synergized Cry11Aa by their specific interaction since single point mutants on both Cyt1Aa and Cry11Aa that affected their binding interaction affected their synergistic insecticidal activity. In this work we show that Cyt1Aa loop β6-αE K198A, E204A and β7 K225A mutants affected binding and synergism with Cry4Ba. In addition, site directed mutagenesis showed that Cry4Ba domain II loop α-8 is involved in binding and in synergism with Cyt1Aa since Cry4Ba SI303-304AA double mutant showed decreased binding and synergism with Cyt1Aa. These data suggest that similarly to the synergism between Cry11Aa and Cyt1Aa toxins, the Cyt1Aa also functions as a receptor for Cry4Ba explaining the mechanism of synergism between these two Bti toxins.  相似文献   

5.
Insecticides based on Bacillus thuringiensis subsp. israelensis have been used for mosquito and blackfly control for more than 20 years, yet no resistance to this bacterium has been reported. Moreover, in contrast to B. thuringiensis subspecies toxic to coleopteran or lepidopteran larvae, only low levels of resistance to B. thuringiensis subsp. israelensis have been obtained in laboratory experiments where mosquito larvae were placed under heavy selection pressure for more than 30 generations. Selection of Culex quinquefasciatus with mutants of B. thuringiensis subsp. israelensis that contained different combinations of its Cry proteins and Cyt1Aa suggested that the latter protein delayed resistance. This hypothesis, however, has not been tested experimentally. Here we report experiments in which separate C. quinquefasciatus populations were selected for 20 generations to recombinant strains of B. thuringiensis that produced either Cyt1Aa, Cry11Aa, or a 1:3 mixture of these strains. At the end of selection, the resistance ratio was 1,237 in the Cry11Aa-selected population and 242 in the Cyt1Aa-selected population. The resistance ratio, however, was only 8 in the population selected with the 1:3 ratio of Cyt1Aa and Cry11Aa strains. When the resistant mosquito strain developed by selection to the Cyt1Aa-Cry11Aa combination was assayed against Cry11Aa after 48 generations, resistance to this protein was 9.3-fold. This indicates that in the presence of Cyt1Aa, resistance to Cry11Aa evolved, but at a much lower rate than when Cyt1Aa was absent. These results indicate that Cyt1Aa is the principal factor responsible for delaying the evolution and expression of resistance to mosquitocidal Cry proteins.  相似文献   

6.
Most strains of the insecticidal bacterium Bacillus thuringiensis have a combination of different protoxins in their parasporal crystals. Some of the combinations clearly interact synergistically, like the toxins present in B. thuringiensis subsp. israelensis. In this paper we describe a novel joint activity of toxins from different strains of B. thuringiensis. In vitro bioassays in which we used pure, trypsin-activated Cry1Ac1 proteins from B. thuringiensis subsp. kurstaki, Cyt1A1 from B. thuringiensis subsp. israelensis, and Trichoplusia ni BTI-Tn5B1-4 cells revealed contrasting susceptibility characteristics. The 50% lethal concentrations (LC50s) were estimated to be 4,967 of Cry1Ac1 per ml of medium and 11.69 ng of Cyt1A1 per ml of medium. When mixtures of these toxins in different proportions were assayed, eight different LC50s were obtained. All of these LC50s were significantly higher than the expected LC50s of the mixtures. In addition, a series of bioassays were performed with late first-instar larvae of the cabbage looper and pure Cry1Ac1 and Cyt1A1 crystals, as well as two different combinations of the two toxins. The estimated mean LC50 of Cry1Ac1 was 2.46 ng/cm2 of diet, while Cyt1A1 crystals exhibited no toxicity, even at very high concentrations. The estimated mean LC50s of Cry1Ac1 crystals were 15.69 and 19.05 ng per cm2 of diet when these crystals were mixed with 100 and 1,000 ng of Cyt1A1 crystals per cm2 of diet, respectively. These results indicate that there is clear antagonism between the two toxins both in vitro and in vivo. Other joint-action analyses corroborated these results. Although this is the second report of antagonism between B. thuringiensis toxins, our evidence is the first evidence of antagonism between toxins from different subspecies of B. thuringiensis (B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. israelensis) detected both in vivo and in vitro. Some possible explanations for this relationship are discussed.  相似文献   

7.
The Bacillus thuringiensis subsp. israelensis cytolytic protein Cyt1Aa was found to be toxic to an insecticide-susceptible laboratory population of Plutella xylostella. Cry1Ac-resistant populations of P. xylostella showed various degrees of resistance to Cyt1Aa. Cyt1Aa/Cry1Ac mixtures showed a marked level of synergism in the Cry1Ac-resistant populations.  相似文献   

8.
在蚊幼虫生活水域里的离中不粘柄菌(Asticcacaulis excentricus,Ae)中已成功表达苏云金芽孢杆菌以色列亚种(Bacillus thuringiensis subsp.israelensis,Bti)杀蚊蛋白基因cry11Aa的基础上,将另一Bti杀蚊蛋白基因cyt1Aa转化入Ae中表达。构建并转化了分别单独含有cyt1Aa基因、及同时含有cry11Aa基因的表达质粒pSODCyt20和pSODCryCyt20,蛋白免疫杂交检测相应的Ae重组子分别表达产生了Cyt1Aa和Cry11Aa蛋白。为了探究Ae(pSODCryCyt20)重组子不能表达cyt1Aa的原因,提取了重组子总RNA、并与同是革兰氏染色阴性的大肠杆菌的总RNA比较,结果显示两者RNA系统显著不同,推测Ae中多个外源基因的表达,可能要求每个基因必需一个启动子。  相似文献   

9.
本研究测定了分别表达苏云金芽孢杆菌Cry4Aa、Cry4Ba、Cry11Aa、Cyt1Aa和球形芽孢杆菌二元毒素Bin的转化菌株Bt B60 1、Bt B611、Bt B640、Bt U 30和Bt CW 3全发酵培养物两两或两两以上不同组合对抗性库蚊的毒力 ,分析了杀蚊毒素间的协同作用。结果表明 ,Bin和Cry4Aa、Bin和Cry 4Ba间有明显的协同作用 ,此外 ,Cry4Aa和Cry4Ba、Cry4Aa和Cry11Aa、Cyt1Aa和Cry4Aa之间也有明显的协同作用  相似文献   

10.
Bacillus thuringiensis subsp. israelensis is a bacterium producing crystals containing Cry and Cyt proteins, which are toxic for mosquito larvae. Nothing is known about the interaction between crystal toxins and decaying leaf litter, which is a major component of several mosquito breeding sites and represents an important food source. In the present work, we investigated the behavior of B. thuringiensis subsp. israelensis toxic crystals sprayed on leaf litter. In the presence of leaf litter, a 60% decrease in the amount of Cyt toxin detectable by immunology (enzyme-linked immunosorbent assays [ELISAs]) was observed, while the respective proportions of Cry toxins were not affected. The toxicity of Cry toxins toward Aedes aegypti larvae was not affected by leaf litter, while the synergistic effect of Cyt toxins on all B. thuringiensis subsp. israelensis Cry toxins was decreased by about 20% when mixed with leaf litter. The toxicity of two commercial B. thuringiensis subsp. israelensis strains (VectoBac WG and VectoBac 12AS) and a laboratory-produced B. thuringiensis subsp. israelensis strain decreased by about 70% when mixed with leaf litter. Taken together, these results suggest that Cyt toxins interact with leaf litter, resulting in a decreased toxicity of B. thuringiensis subsp. israelensis in litter-rich environments and thereby dramatically reducing the efficiency of mosquitocidal treatments.  相似文献   

11.
Bacillus thuringiensis subsp. israelensis produces three Cry toxins (Cry4Aa, Cry4Ba and Cry11Aa) that are active against Aedes aegypti larvae. The identification of the rate-limiting binding steps of Cry toxins that are used for insect control in the field, such as those of B. thuringiensis subsp. israelensis, should provide targets for improving insecticides against important insect pests. Previous studies showed that Cry11Aa binds to cadherin receptor fragment CR7-11 (cadherin repeats 7-11) with high affinity. Binding to cadherin has been proposed to facilitate Cry toxin oligomer formation. In the present study, we show that Cry4Ba binds to CR7-11 with 9-fold lower binding affinity compared with Cry11Aa. Oligomerization assays showed that Cry4Ba is capable of forming oligomers when proteolytically activated in vitro in the absence of the CR7-11 fragment in contrast with Cry11Aa that formed oligomers only in the presence of CR7-11. Pore-formation assays in planar lipid bilayers showed that Cry4Ba oligomers were proficient in opening ion channels. Finally, silencing the cadherin gene by dsRNA (double-stranded RNA) showed that silenced larvae were more tolerant to Cry11Aa in contrast with Cry4Ba, which showed similar toxic levels to those of control larvae. These findings show that cadherin binding is not a limiting step for Cry4Ba toxicity to A. aegypti larvae.  相似文献   

12.
苏云金杆菌以色列亚种的p19基因、cry11Aa基因和p20基因位于同一操纵子上,据推测辅助蛋白P19可能与Cry11Aa蛋白的晶体化相关。本研究利用穿梭载体pHT3101构建了两个重组质粒pHcy1和pHcy3,两质粒均携带cry11Aa基因,但后者完全缺失了cry11Aa基因上游的p19基因。将重组质粒电激转化至苏云金杆菌无晶体突变株4Q7中进行蛋白表达,SDS-PAGE结果表明在4Q7(pHcy1)和4Q7(pHcy3)中均能检测到正常表达的Cry11Aa蛋白,但单位体积培养液的Cry11Aa蛋白在辅助蛋白P19存在时的表达量明显高于其单独表达的表达量;透射电镜观察显示两菌株中的Cry11Aa蛋白形成了大小相近、形状相似的双梯形晶体;另外,生物测定结果表明重组菌株4Q7(pHcy1)和4Q7(pHcy3)对三龄致倦库蚊的杀虫活性没有显著性差异。该现象说明辅助蛋白P19的缺失对Cry11Aa蛋白的晶体形成和杀蚊活性没有影响,但P19作为分子伴侣在一定程度上帮助提高了Cry11Aa蛋白的表达水平。  相似文献   

13.
Sixteen Escherichia coli clones were assayed against susceptible and Bacillus thuringiensis-resistant Culex quinquefasciatus larvae. The clones expressed different combinations of four genes from Bacillus thuringiensis ssp. israelensis; three genes encoded mosquitocidal toxins (Cry11Aa, Cry4Aa and Cyt1Aa) and the fourth encoded an accessory protein (P20). The cross-resistance spectra of the mosquitoes were similar to the profiles for recombinant B. thuringiensis strains expressing B. thuringiensis toxin genes, but with varied toxicity levels. The toxicity of the recombinants towards resistant mosquito larvae was improved when p20 and cyt1Aa were expressed in combination with cry4Aa and/or cry11Aa. Recombinant pVE4-ADRC, expressing cry4Aa, cry11Aa, p20 and cyt1Aa, was the most active against the resistant Culex, and resistance levels did not exceed fourfold. These results indicate that B. thuringiensis ssp. israelensis genes expressed in a heterologous host such as E. coli can be effective against susceptible and B. thuringiensis-resistant larvae and suppress resistance.  相似文献   

14.
A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC(50)] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC(50) = 7.9 ng/ml) or B. sphaericus 2362 (LC(50) = 12.6 ng/ml).  相似文献   

15.
A 2,175-bp modified gene (cry11Ba-S1) encoding Cry11Ba from Bacillus thuringiensis subsp. jegathesan was designed and the recombinant protein was expressed as a fusion protein with glutathione S-transferase in Escherichia coli. The recombinant Cry11Ba was highly toxic against Culex pipiens mosquito larvae, being nine and 17 times more toxic than mosquitocidal Cry4Aa and Cry11Aa from Bacillus thuringiensis subsp. israelensis, respectively. Interestingly, a further increase in the toxicity of the recombinant Cry11Ba was achieved by mixing with Cry4Aa, but not with Cry11Aa. These findings suggested that Cry11Ba worked synergistically with Cry4Aa, but not with Cry11Aa, in exhibiting toxicity against C. pipiens larvae. On the other hand, the amount of Cry toxin bound to brush border membrane vesicles (BBMVs) did not significantly change between individual toxins and the toxin mixtures, suggesting that the increase in toxins binding to BBMVs was not a reason for the observed synergistic effect. It is generally accepted that synergism of toxins is a potentially powerful tool for enhancing insecticidal activity and managing Cry toxin resistance in mosquitoes. The mixture of Cry4Aa and Cry11Ba in order to increase toxicity would be very valuable in terms of mosquito control.  相似文献   

16.
The insecticidal Cry11Aa and Cyt1Aa proteins are produced by Bacillus thuringiensis as crystal inclusions. They work synergistically inducing high toxicity against mosquito larvae. It was proposed that these crystal inclusions are rapidly solubilized and activated in the gut lumen, followed by pore formation in midgut cells killing the larvae. In addition, Cyt1Aa functions as a Cry11Aa binding receptor, inducing Cry11Aa oligomerization and membrane insertion. Here, we used fluorescent labeled crystals, protoxins or activated toxins for in vivo localization at nano-scale resolution. We show that after larvae were fed solubilized proteins, these proteins were not accumulated inside the gut and larvae were not killed. In contrast, if larvae were fed soluble non-toxic mutant proteins, these proteins were found inside the gut bound to gut-microvilli. Only feeding with crystal inclusions resulted in high larval mortality, suggesting that they have a role for an optimal intoxication process. At the macroscopic level, Cry11Aa completely degraded the gastric caeca structure and, in the presence of Cyt1Aa, this effect was observed at lower toxin-concentrations and at shorter periods. The labeled Cry11Aa crystal protein, after midgut processing, binds to the gastric caeca and posterior midgut regions, and also to anterior and medium regions where it is internalized in ordered “net like” structures, leading finally to cell break down. During synergism both Cry11Aa and Cyt1Aa toxins showed a dynamic layered array at the surface of apical microvilli, where Cry11Aa is localized in the lower layer closer to the cell cytoplasm, and Cyt1Aa is layered over Cry11Aa. This array depends on the pore formation activity of Cry11Aa, since the non-toxic mutant Cry11Aa-E97A, which is unable to oligomerize, inverted this array. Internalization of Cry11Aa was also observed during synergism. These data indicate that the mechanism of action of Cry11Aa is more complex than previously anticipated, and may involve additional steps besides pore-formation activity.  相似文献   

17.
Strains of Bacillus thuringiensis such as B. thuringiensis subsp. israelensis (ONR-60A) and B. thuringiensis subsp. morrisoni (PG-14) pathogenic for mosquito larvae produce a complex parasporal body consisting of several protein endotoxins synthesized during sporulation that form an aggregate of crystalline inclusions bound together by a multilamellar fibrous matrix. Most studies of these strains focus on the molecular biology of the endotoxins, and although it is known that parasporal body structural integrity is important to achieving high toxicity, virtually nothing is known about the matrix that binds the toxin inclusions together. In the present study, we undertook a proteomic analysis of this matrix to identify proteins that potentially mediate assembly and stability of the parasporal body. In addition to fragments of their known major toxins, namely, Cry4Aa, Cry4Ba, Cry11Aa, and Cyt1Aa, we identified peptides with 100% identity to regions of Bt152, a protein coded for by pBtoxis of B. thuringiensis subsp. israelensis, the plasmid that encodes all endotoxins of this subspecies. As it is known that the Bt152 gene is expressed in B. thuringiensis subsp. israelensis, we disrupted its function and showed that inactivation destabilized the parasporal body matrix and, concomitantly, inclusion aggregation. Using fluorescence microscopy, we further demonstrate that Bt152 localizes to the parasporal body in both strains, is absent in other structural or soluble components of the cell, including the endospore and cytoplasm, and in ligand blots binds to purified multilamellar fibrous matrix. Together, the data show that Bt152 is essential for stability of the parasporal body of these strains.  相似文献   

18.
利用穿梭载体pBU4,将苏云金杆菌以色列亚种(Bti)的cry4Aa、cry4Ba和cry11Aa基因分别转入Bti无晶体突变株4Q7中,获得了转化菌株Bt-B601、Bt-B611和Bt-B640。SDS-PAGE结果显示:cry4Aa、cry4Ba和cry11Aa蛋白均分别获得了表达。透射电镜下观察,转化菌 有产生球形或菱形伴胞晶体。转化菌株对敏感和抗性致倦库蚊及白纹伊蚊幼虫的生物测定结果显示:cry4Aa、cry4Ba和cry11Aa蛋白对库蚊和伊蚊的毒力较低,二元毒素抗性库蚊幼虫对Bti杀蚊毒素蛋白无明显的交叉抗性。  相似文献   

19.
The toxicity of Bacillus thuringiensis subsp. israelensis to dipteran larvae (mosquitoes and black flies) depends on the presence of the pBtoxis plasmid. In this paper, two antibiotic resistance tagged pBtoxis were transferred by conjugation to other Bacillus cereus group strains. Among 15 potential recipients, only a lepidopteran active B. thuringiensis subspecies kurstaki and a B. cereus strain received the plasmid pBtoxis with a low transfer rate of about 10(-8) transconjugants/recipient. The resulting B. thuringiensis subspecies kurstaki transconjugant was active to both lepidopteran and dipteran targets and the B. cereus transconjugant was active against dipteran insects. Phase contrast microscopy showed that the B. cereus transconjugants could produce only round crystalline inclusion bodies while B. thuringiensis subspecies kurstaki transconjugant could produce both round and bipyramidal crystals during sporulation. SDS-PAGE revealed that all the major mosquitocidal proteins from pBtoxis could express in the two transconjugants, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa and Cyt1Aa. However, none of the experiment showed any indications of mobilising abilities of pBtoxis. The limited number of strains, which could receive and maintain pBtoxis using a conjugational helper plasmid, indicates a very narrow host range of the B. thuringiensis subsp. israelensis pBtoxis plasmid.  相似文献   

20.
Two mosquitocidal toxins (Mtx) of Bacillus sphaericus, which are produced during vegetative growth, were investigated for their potential to increase toxicity and reduce the expression of insecticide resistance through their interactions with other mosquitocidal proteins. Mtx-1 and Mtx-2 were fused with glutathione S-transferase and produced in Escherichia coli, after which lyophilized powders of these fusions were assayed against Culex quinquefasciatus larvae. Both Mtx proteins showed a high level of activity against susceptible C. quinquefasciatus mosquitoes, with 50% lethal concentrations (LC(50)) of Mtx-1 and Mtx-2 of 0.246 and 4.13 microg/ml, respectively. The LC(50)s were 0.406 to 0.430 microg/ml when Mtx-1 or Mtx-2 was mixed with B. sphaericus, and synergy improved activity and reduced resistance levels. When the proteins were combined with a recombinant Bacillus thuringiensis strain that produces Cry11Aa, the mixtures were highly active against Cry11A-resistant larvae and resistance was also reduced. The mixture of two Mtx toxins and B. sphaericus was 10 times more active against susceptible mosquitoes than B. sphaericus alone, demonstrating the influence of relatively low concentrations of these toxins. These results show that, similar to Cyt toxins from B. thuringiensis subsp. israelensis, Mtx toxins can increase the toxicity of other mosquitocidal proteins and may be useful for both increasing the activity of commercial bacterial larvicides and managing potential resistance to these substances among mosquito populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号