首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Journal of Asia》2022,25(3):101971
The symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) improves plant growth and increases its resistance to pests and diseases. Mycorrhizal fungi are among the specialized fungi associated with the rhizosphere and are completely dependent on plant organic carbon. In this research tomato, Solanum lycopersicum L. was used as the host plant to evaluate the interaction effects between inoculation of tomato plant with AMF and feeding of tomato leaf miner, Tuta absoluta (Meyrick). In addition, plant growth parameters and growth rate of insect were assessed. The mycorrhizal treatment included a mixture of four fungal species (Funneliformis mosseae, Rhizophagus intraradices, R. irregularis and Glomus iranicus). The results of the experiment showed that tomato plant roots were well colonized (66.29%) by AMF and there was a significant mutual relationship between the insects feeding on the plants and the fungi. Feeding by the insects on plants inoculated with the fungus increased percentage of colonization by AMF in plants infested with the insect as compared to the control plants. The results also indicated that growth parameters and phosphorus content of the plants inoculated with fungi significantly increased compared to the control group. Moreover, significantly lower growth rate and consumption index observed in the T. absoluta larvae were fed on the leaves of plants treated with AMF compared to leaves of plants not inoculated with AMF.  相似文献   

3.
Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen‐fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co‐occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant‐associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free‐living nitrogen‐fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two‐spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co‐occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant‐mediated interactions between interrelated belowground fungi–bacteria and aboveground herbivores.  相似文献   

4.
5.
Moringa is a mycorrhizal crop cultivated in the tropics and subtropics and appreciated for its nutritive and health-promoting value. As well as improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can affect plant synthesis of compounds bioactive against chronic diseases in humans. Rhizophagus intraradices and Funneliformis mosseae were used in a full factorial experiment to investigate the impact of AMF on the accumulation of glucosinolates, flavonoids, phenolic acids, carotenoids, and mineral elements in moringa leaves. Levels of glucosinolates were enhanced, flavonoids and phenolic acids were not affected, levels of carotenoids (including provitamin A) were species-specifically reduced, and mineral elements were affected differently, with only Cu and Zn being increased by the AMF. This study presents novel results on AMF effects on glucosinolates in leaves and supports conclusions that the impacts of these fungi on microelement concentrations in edible plants are species dependent. The nonspecific positive effects on glucosinolates and the species-specific negative effects on carotenoids encourage research on other AMF species to achieve general benefits on bioactive compounds in moringa.  相似文献   

6.
  • Soil salinity severely affects and constrains crop production worldwide. Salinity causes osmotic and ionic stress, inhibiting gas exchange and photosynthesis, ultimately impairing plant growth and development. Arbuscular mycorrhiza (AM) have been shown to maintain light and carbon use efficiency under stress, possibly providing a tool to improve salinity tolerance of the host plants. Thus, it was hypothesized that AM will contribute to improved growth and yield under stress conditions.
  • Wheat plants (Triticum aestivum L.) were grown with (AMF+) or without (AMF?) arbuscular mycorrhizal fungi (AMF) inoculation. Plants were subjected to salinity stress (200 mm NaCl) either at pre‐ or post‐anthesis or at both stages. Growth and yield components, leaf chlorophyll content as well as gas exchange parameters and AMF colonization were analysed.
  • AM plants exhibited a higher rate of net photosynthesis and stomatal conductance and lower intrinsic water use efficiency. Furthermore, AM wheat plants subjected to salinity stress at both pre‐anthesis and post‐anthesis maintained higher grain yield than non‐AM salinity‐stressed plants.
  • These results suggest that AMF inoculation mitigates the negative effects of salinity stress by influencing carbon use efficiency and maintaining higher grain yield under stress.
  相似文献   

7.
Laird RA  Addicott JF 《Oecologia》2007,152(3):541-551
Arbuscular mycorrhizal fungi (AMF) can alter the physiology and morphology of their host plant, and therefore may have indirect effects on insect herbivores and pollinators. We conducted this study to test the hypothesis that AMF can also affect insects involved in protection-for-food mutualisms. We examined the constitutive and inducible production of food rewards [extrafloral (EF) nectaries] in Vicia faba plants by manipulating the presence/absence of AMF and by simulating various levels of herbivory. Plants inoculated with AMF produced significantly fewer EF nectaries than uninoculated plants, even after accounting for differences in plant growth. In contrast to earlier studies, EF nectaries were not inducible: damaged plants produced significantly fewer EF nectaries than undamaged plants. Moreover, the effects of mycorrhizal and damage status on EF nectary production were additive. The reduction in EF nectaries in mycorrhizal plants potentially represents a mechanism for indirect effects of AMF on the protective insects that exploit EF nectaries as a food source (e.g., ants). Reduced reward size should result in reduced protection by ants, and could therefore be a previously unappreciated cost of the mycorrhizal symbiosis to host plants. However, the overall effect of AMF will depend upon the extent to which the reduction of EF nectaries affects the number and activity of ants and the extent to which AMF alter other aspects of host plant physiology. Our results emphasize the complexity of multitrophic interactions, particularly those that span belowground and aboveground ecology.  相似文献   

8.
  1. Plants interact with various organisms, aboveground as well as belowground. Such interactions result in changes in plant traits with consequences for members of the plant‐associated community at different trophic levels. Research thus far focussed on interactions of plants with individual species. However, studying such interactions in a community context is needed to gain a better understanding.
  2. Members of the aboveground insect community induce defences that systemically influence plant interactions with herbivorous as well as carnivorous insects. Plant roots are associated with a community of plant‐growth promoting rhizobacteria (PGPR). This PGPR community modulates insect‐induced defences of plants. Thus, PGPR and insects interact indirectly via plant‐mediated interactions.
  3. Such plant‐mediated interactions between belowground PGPR and aboveground insects have usually been addressed unidirectionally from belowground to aboveground. Here, we take a bidirectional approach to these cross‐compartment plant‐mediated interactions.
  4. Recent studies show that upon aboveground attack by insect herbivores, plants may recruit rhizobacteria that enhance plant defence against the attackers. This rearranging of the PGPR community in the rhizosphere has consequences for members of the aboveground insect community. This review focusses on the bidirectional nature of plant‐mediated interactions between the PGPR and insect communities associated with plants, including (a) effects of beneficial rhizobacteria via modification of plant defence traits on insects and (b) effects of plant defence against insects on the PGPR community in the rhizosphere. We discuss how such knowledge can be used in the development of sustainable crop‐protection strategies.
  相似文献   

9.
Plant parasitic nematodes and arbuscular mycorrhizal fungi (AMF) share plant roots as a resource for food and space. The interest in AMF-nematode interactions lies in the possibility of enhanced resistance or tolerance of AMF-infected plants to nematodes, and the potential value of this for control of crop pests. Data collated from previous studies revealed a great diversity of AMF-nematode responses and we seek to generalise from these by evaluating and discussing interactions involving three groups of nematodes distinguished by their mode of parasitism: (i) ectoparasites; (ii) sedentary endoparasites; and (iii) migratory endoparasites. Based on proximity in tissue, we expected that the interactions between endoparasites and AMF would be stronger, i.e. more reciprocal effects of endoparasitic nematodes on AMF, than those between ectoparasites and AMF. Contrary to this hypothesis, we found that, relative to AMF-free plants, AMF-infected plants were damaged more by ectoparasites than by endoparasites. Of the sedentary endoparasites, numbers of root-knot nematodes were reduced more by mycorrhizal infection than were those of cyst nematodes. The reduction in nematode damage by AMF was not different for root-knot or cyst nematode infested plants. Migratory endoparasitic nematodes were the only group whose numbers were greater on AMF-infected plants. However, the experiments involving migratory nematodes were characterised by relatively high levels of AMF infection and little nematode damage compared to the other feeding types. The outcomes of the AMF-nematode interactions are determined by many factors during the interactions between organisms and their physical, physiological and temporal environments. Assessing effects by recording plant sizes and total nematode or AMF populations at the end of experiments gives very little information on the mechanisms of the interactions. It is time to stop doing studies of black boxes and time to start observing processes, directly by using microscopy and indirectly by application of molecular genetics.  相似文献   

10.
The mycorrhizal fungi are symbiotic organisms able to provide many benefits to crop production by supplying a set of ecosystem functions. A recent ecological approach based on the ability of the fungi community to influence plant–plant interactions by extraradical mycelium development may be applied to diversified, herbaceous agroecosystems. Our hypothesis is that the introduction of a winter cereal cover crop (CC) as arbuscular mycorrhizal fungi (AMF)–host plant in an organic rotation can boosts the AMF colonization of the other plants, influencing crop–weed interference. In a 4‐years organic rotation, the effect of two winter cereal CC, rye and spelt, on weed density and AMF colonization was evaluated. The AMF extraradical mycelium on CC and weeds roots was observed by scanning electron microscopy analysis. By joining data of plant density and mycorrhization, we built the mycorrhizal colonization intensity of the Agroecosystem indicator (MA%). Both the CC were colonized by soil AMF, being the mycorrhizal colonization intensity (M%) affected by environmental conditions. Under CC, the weed density was reduced, due to the increase of the reciprocal competition in favor of CC, which benefited from mycorrhizal colonization and promoted the development of AMF extraradical mycelium. Even though non‐host plants, some weed species showed an increased mycorrhizal colonization in presence of CC respect to the control. Under intense rainfall, the MA% was less sensitive to the CC introduction. On the opposite, under highly competitive conditions, both the CC boosted significantly the mycorrhization of coexistent plants in the agroecosystem. The proposed indicator measured the agroecological service provided by the considered CCs in promoting or inhibiting the overall AMF colonization of the studied agroecosystems, as affected by weed selection and growth: It informs about agroecosystem resilience and may be profitably applied to indicate the extent of the linkage of specific crop traits to agroecosystem services, contributing to further develop the functional biodiversity theory.  相似文献   

11.
  • The induction of defences in response to herbivory is a key mechanism of plant resistance. While a number of studies have investigated the time course and magnitude of plant induction in response to a single event of herbivory, few have looked at the effects of recurrent herbivory. Furthermore, studies measuring the effects of the total amount and recurrence of herbivory on both direct and indirect plant defences are lacking. To address this gap, here we asked whether insect leaf herbivory induced changes in the amount and concentration of extrafloral nectar (an indirect defence) and concentration of leaf phenolic compounds (a direct defence) in wild cotton (Gossypium hirsutum).
  • We conducted a greenhouse experiment where we tested single event or recurrent herbivory effects on defence induction by applying mechanical leaf damage and caterpillar (Spodoptera frugiperda) regurgitant.
  • Single events of 25% and 50% leaf damage did not significantly influence extrafloral nectar production or concentration. Extrafloral nectar traits did, however, increase significantly relative to controls when plants were exposed to recurrent herbivory (two episodes of 25% damage). In contrast, phenolic compounds increased significantly in response to single events of  leaf damage but not to recurrent damage. In addition, we found. that local induction of extrafloral nectar production was stronger than systemic induction, whereas the reverse pattern was observed for phenolics.
  • Together, these results reveal seemingly inverse patterns of induction of direct and indirect defences in response to herbivory in wild cotton.
  相似文献   

12.
  1. White-tailed deer (Odocoileus virginianus Zimmermann) and insect pests negatively affect soybean production; however, little is known about how these herbivores potentially interact to affect soybean yield. Previous studies have shown deer browse on non-crop plants affects insect density and insect-mediated leaf damage, which together reduce plant reproductive output. In soybeans, reproductive output is influenced by direct and indirect interactions of different herbivores.
  2. Here, we quantified indirect interactions between two groups of herbivores (mammals and insects) and their effects on soybean growth and yield. We examined responses of insect pest communities along a gradient of deer herbivory (29% to 49% browsed stems) in soybean monocultures.
  3. Structural equation models showed that deer browse had direct negative effects on soybean plant height and yield. Deer browse indirectly decreased insect-mediated leaf damage by reducing plant height. Deer browse also indirectly increased pest insect abundance through reductions in plant height. Similarly, deer herbivory had an indirect positive effect on leaf carbon: nitrogen ratios through changes in plant height, thereby decreasing leaf nutrition.
  4. These results suggest that pest insect abundance may be greater on soybean plants in areas of higher deer browse, but deer browse may reduce insect herbivory through reduced leaf nutrition.
  相似文献   

13.
While invasive plants are widely studied for their effects on native plants, we questioned how plant invasions affect higher trophic levels. We investigated the effects of the invasive plant, Brassica nigra on the multi-trophic arthropod community residing on the native California annual Deinandra fasciculata. In a common garden experiment, we planted D. fasciculata without B. nigra or with one of 45 B. nigra half-sib genetic families. We in turn crossed this B. nigra treatment with the suppression of soil fungi to both test for effects of arbuscular mycorrhizal fungi (AMF) on arthropods, and elucidate the mechanisms of B. nigra’s below ground effects. B. nigra had no effect on D. fasciculata traits (biomass, inflorescence number, root colonization by AMF), arthropod community composition or predator density, but increased herbivore density. While B. nigra families varied 18-fold in size, there was no genetic variation for effects on D. fasciculata or its arthropods. Soil fungi suppression had no effect on D. fasciculata traits, herbivore density or herbivore community composition, but increased predator density and altered predator community composition. While the exact mechanisms of B. nigra effects are unclear, they do not appear to have been mediated by altered plant performance or reductions in root colonization by AMF. Our experiment shows that invasive plants such as B. nigra may affect higher trophic levels even when they do not measurably affect native plant performance.  相似文献   

14.
  • Secondary metabolites may be affected by arbuscular mycorrhizal fungi (AMF), which are beneficial symbionts associated with the roots of most plant species. Bituminaria bituminosa (L.) C.H.Stirt is known as a source of several phytochemicals and therefore used in folk medicine as a vulnerary, cicatrising, disinfectant agent. Characteristic metabolites found in B. bituminosa are furanocoumarins and pterocarpans, which are used in cosmetics and as chemotherapeutic agents. Here we address the question whether AMF inoculation might affect positively the synthesis of these phytochemicals.
  • B. bituminosa plants were inoculated with different AMF and several metabolites were assessed during full vegetative stage and flowering phase. Pigments (chlorophylls and carotenoids), polyphenols and flavonoids were spectrophotometrically determined; specific isoflavones (genistein), furanocoumarins (psoralene and angelicin), pterocarpans (bitucarpin A and erybraedin C) and plicatin B were assessed with HPLC; leaf volatile organic compounds were analysed using SPME and identified by GC‐MS.
  • During the vegetative stage, the inoculated plants had a high amount of furanocoumarins (angelicin and psoralen) and pterocarpans (erybraedin C and bitucarpin A). The analysis of volatile organic compounds of inoculated plants showed different chemical composition compared with non‐mycorrhizal plants.
  • Given the important potential role played by furanocoumarins and pterocarpans in the pharmaceutical industry, AMF inoculation of B. bituminosa plants may represent a suitable biotechnological tool to obtain higher amounts of such metabolites for pharmaceutical and medicinal purposes.
  相似文献   

15.
Salt stress limits crop yield and sustainable agriculture in most arid and semiarid regions of the world. Arbuscular mycorrhizal fungi (AMF) are considered bio-ameliorators of soil salinity tolerance in plants. In evaluating AMF as significant predictors of mycorrhizal ecology, precise quantifiable changes in plant biomass and nutrient uptake under salt stress are crucial factors. Therefore, the objective of the present study was to analyze the magnitude of the effects of AMF inoculation on growth and nutrient uptake of plants under salt stress through meta-analyses. For this, data were compared in the context of mycorrhizal host plant species, plant family and functional group, herbaceous vs. woody plants, annual vs. perennial plants, and the level of salinity across 43 studies. Results indicate that, under saline conditions, AMF inoculation significantly increased total, shoot, and root biomass as well as phosphorous (P), nitrogen (N), and potassium (K) uptake. Activities of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase also increased significantly in mycorrhizal compared to nonmycorrhizal plants growing under salt stress. In addition, sodium (Na) uptake decreased significantly in mycorrhizal plants, while changes in proline accumulation were not significant. Across most subsets of the data analysis, identities of AMF (Glomus fasciculatum) and host plants (Acacia nilotica, herbs, woody and perennial) were found to be essential in understanding plant responses to salinity stress. For the analyzed dataset, it is concluded that under salt stress, mycorrhizal plants have extensive root traits and mycorrhizal morphological traits which help the uptake of more P and K, together with the enhanced production of antioxidant enzymes resulting in salt stress alleviation and increased plant biomass.  相似文献   

16.
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with a majority of terrestrial plants to form underground common mycorrhizal networks (CMNs) that connect neighbouring plants. Because Nicotiana attenuata plants do not respond to herbivory‐elicited volatiles from neighbours, we used this ecological model system to evaluate if CMNs function in interplant transmission of herbivory‐elicited responses. A mesocosm system was designed to establish and remove CMNs linking N. attenuata plants to examine the herbivory‐elicited metabolic and hormone responses in CMNs‐connected “receiver” plants after the elicitation of “donor” plants by wounding (W) treated with Manduca sexta larval oral secretions (OS). AMF colonization increased constitutive jasmonate (JA and JA‐Ile) levels in N. attenuata roots but did not affect well‐characterized JAs‐regulated defensive metabolites in systemic leaves. Interestingly, larger JAs bursts, and higher levels of several amino acids and particular sectors of hydroxygeranyllinalool diterpene glycoside metabolism were elevated in the leaves of W + OS‐elicited “receivers” with CMN connections with “donors” that had been W + OS‐elicited 6 hr previously. Our results demonstrate that AMF colonization alone does not enhance systemic defence responses but that sectors of systemic responses in leaves can be primed by CMNs, suggesting that CMNs can transmit and even filter defence signalling among connected plants.  相似文献   

17.
接种AMF对菌根植物和非菌根植物竞争的影响   总被引:4,自引:0,他引:4  
张宇亭  王文华  申鸿  郭涛 《生态学报》2012,32(5):1428-1435
为了研究丛枝菌根真菌(arbuscular mycorrhizal fungus, AMF)对菌根植物与非菌根植物种间竞争的影响,以玉米(菌根植物)和油菜(非菌根植物)作为供试植物,分别进行间作、尼龙网分隔和单作,模拟这两种植物之间不同的竞争状态,接种丛枝菌根真菌Glomus intraradicesGlomus mosseae,比较菌根植物和非菌根植物的生长和磷营养状况,分析AMF侵染对植物种间竞争作用的影响。结果显示,与单作相比,间作模式下玉米的生物量及磷营养状况有所降低,但其菌根依赖性却有所提高。与不接种相比,接种处理显著降低了间作体系油菜根系的磷含量和磷吸收量,但趋于改善菌根植物玉米的磷营养状况。因此,接种AMF可以降低非菌根植物的磷营养状况及生物量,使得菌根植物的相对竞争能力明显提高,说明AMF在维持物种多样性方面有着重要的作用。  相似文献   

18.
丛枝菌根真菌提高盐胁迫植物抗氧化机制的研究进展   总被引:3,自引:0,他引:3  
孙思淼  常伟  宋福强 《应用生态学报》2020,31(10):3589-3596
土地盐渍化是在自然环境和人为活动的双重作用下形成的全球性的重要生态问题,其会对植物造成渗透失衡、离子胁迫、氧化损伤等危害,导致植物生长缓慢、生物量减少甚至是绝产。丛枝菌根真菌(AMF)是一种普遍存在于土壤中的有益微生物,能够与大多数植物根系形成共生关系,其共生关系在多种逆境生态系统中均具有重要生态意义。AMF-植物共生体具有高效抗氧化系统,能够提高植物在盐胁迫下的抗氧化反应进而增强耐盐性。本文从氧化损伤、渗透调节、抗氧化机制和生物活性分子等角度,系统地阐述了丛枝菌根真菌提高植物抗氧化机制的研究进展,并提出了研究展望,以期为利用菌根生物技术提高植物耐盐性提供理论参考。  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) are applied in agriculture to improve plant nutrition and confer better resistance to biotic and abiotic stresses. Spinacia oleracea L. is an economically important herbaceous crop characterized by limited tolerance to water stress. We compared the effects of three species of AMF belonging to the genus Glomus on gas exchange rates, growth and yield of spinach plants exposed to acute and prolonged water stress. Inoculated plants always gave better results than control (non-inoculated), stressed ones, being G. clarum the species that provided the significantly best effects and G. monosporum the less remarkable ones. Mycorrhizal inoculation is a valid tool to provide water stress resistance to horticultural crops, and experimental comparisons among different mycorrhizal strains can help to optimize the effect through the identification of specific associations.  相似文献   

20.
植物耐虫性研究进展   总被引:19,自引:0,他引:19  
本文简要介绍了植物耐虫性的含义、发生范围、耐虫性的进化过程和遗传特性、耐虫性机理以及影响植物耐虫性表达的非生物和生物因子。植物耐虫性机理的研究涉及光合作用能力变化、同化产物的再分配、内源激素的变化、休眠分生组织的激活和补偿生长、储藏器官的利用、植物物候学和植株株型结构的变化等。研究表明,植物受害后光合作用强度的变化与其耐虫性没有相关性,有些耐虫植物受害后光合作用能力增加,有些植物光合作用强度无明显影响或者下降较少; 害虫取食为害可促进耐虫植物的同化产物得到最大程度利用,能激活耐虫植物的休眠分生组织,产生超补偿作用; 耐虫植物受害部位细胞分裂素含量显著升高; 虫害引起物候学变化小的植物具有较强的耐虫性; 植物的冠层结构、叶形态、根茎比、茎蘖数等植株株型变化与耐虫性有关。影响植物耐虫性表达的因子主要有温度、大气CO2浓度、土壤营养水平、农用化学物质、植株年龄、害虫分布类型和取食方式、植物共生物等。不同植物在相同温度下对同一种害虫的耐害性差异大,其主要原因可能是由于温度的变化引起同化产物的分配和再分配以及气孔关闭对气体交换和光合作用能力的影响; 生长在高CO2含量大气中的植物,对害虫的为害有较强耐受性。土壤营养水平对植物耐虫性表达的影响大于温度,增施磷、钾肥可增加植物的耐虫性。聚集分布型害虫为害对植物造成的损失大于随机分布型和均匀分布型害虫,害虫的取食方式、传粉昆虫的活动、植物内生真菌和菌根真菌的感染均影响到植物耐虫性的表达水平。文中最后讨论了植物耐虫性在害虫综合治理中的重要性及应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号