首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been proposed that a hypoxia-induced inhibition of the Na(+)-Ca(2+) exchanger (NCX) contributes to hypoxic pulmonary vasoconstriction (HPV). By recording isometric tension development in rat intrapulmonary arteries (IPA), we examined the effect on HPV of maneuvers that reduce the ability of NCX to regulate intracellular Ca(2+) concentration ([Ca(2+)](i)). In some experiments, fura pentakis(acetoxymethyl) ester-3 (fura PE-3) was also used to monitor [Ca(2+)](i). HPV was elicited in IPA that were pretreated with 10 microM diltiazem and slightly preconstricted with PGF(2alpha), which enhances the hypoxic response. Substitution of Na(+) with Li(+) increased HPV and the associated rise in [Ca(2+)](i). Pretreatment with ouabain (100 microM) to diminish the Na(+) gradient or with the reverse-mode NCX inhibitor KB-R7943 (3 or 10 microM) had no significant effect on HPV. Combined treatment with ouabain and low-[Na(+)] (24 mM) solution enhanced HPV strongly. The role of NCX in Ca(2+) extrusion was examined by assessing the decrease in [Ca(2+)](i) in Ca(2+)-free physiological saline solution either containing or lacking Na(+) following a high K(+)-induced loading of cellular [Ca(2+)]. Although the large initial rapid fall in [Ca(2+)] was Na(+) independent, final recovery of [Ca(2+)] to its basal level was delayed in the absence of Na(+). Therefore, HPV persisted or was increased under conditions in which forward-mode NCX was already attenuated or prevented, demonstrating that inhibition of NCX by hypoxia is unlikely to initiate HPV. Instead, NCX appears to act to inhibit HPV as would be expected if it is functioning to extrude Ca(2+).  相似文献   

2.
We have studied cyclopiazonic acid (CPA)-sensitive store-operated Ca(2+) entry (SOCE) in cultured neurons and astrocytes and examined the effect of 2-[2-[4-(4-nitrobenzyloxy)phenyl]]isothiourea (KB-R7943), which is often used as a selective inhibitor of the Na(+)-Ca(2+) exchanger (NCX), on the SOCE. CPA increased transiently intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a sustained increase in [Ca(2+)](i) in neurons and astrocytes. The sustained increase in [Ca(2+)](i) depended on the presence of extracellular Ca(2+) and inhibited by SOCE inhibitors, but not by a Ca(2+) channel inhibitor. CPA also caused quenching of fura-2 fluorescence when the cells were incubated in Mn(2+)-containing medium. KB-R7943 at 10 microM inhibited significantly CPA-induced sustained increase in [Ca(2+)](i) in neurons and astrocytes. KB-R7943 also inhibited CPA-induced quenching of fura-2 fluorescence in the presence of extracellular Mn(2+). These results indicate that cultured neurons and astrocytes possess SOCE and that KB-R7943 inhibits not only NCX but also SOCE.  相似文献   

3.
The data presented in this work suggest that in human umbilical artery (HUA) smooth muscle cells, the Na(+)/Ca(2+) exchanger (NCX) is active and working in the reverse mode. This supposition is based on the following results: (i) microfluorimetry in HUA smooth muscle cells in situ showed that a Ca(2+)-free extracellular solution diminished intracellular Ca(2+) ([Ca(2+)](i)), and KB-R7943 (5microM), a specific inhibitor of the Ca(2+) entry mode of the exchanger, also decreased [Ca(2+)](i) (40.6+/-4.5% of Ca(2+)-free effect); (ii) KB-R7943 produced the relaxation of HUA rings (-24.7+/-7.3gF/gW, n=8, p<0.05); (iii) stimulation of the NCX by lowering extracellular Na(+) increases basal [Ca(2+)](i) proportionally to Na(+) reduction (Delta fluorescence ratio=0.593+/-0.141 for Na(+)-free solution, n=8) and HUA rings' contraction (peak force=181.5+/-39.7 for 130mM reduction, n=8), both inhibited by KB-R7943 and a Ca(2+)-free extracellular solution. In conclusion, the NCX represents an important Ca(2+) entry route in HUA smooth muscle cells.  相似文献   

4.
Although the extent of ischemic brain damage is directly proportional to the duration of anoxic depolarization (AD), the mechanism of cytosolic [Ca(2+)] ([Ca(2+)](c)) elevation during AD is poorly understood. To address the mechanism in this study, [Ca(2+)](c) was monitored in cultured rat hippocampal CA1 neurons loaded with a Ca-sensitive dye, fura-2FF, and exposed to an AD-simulating medium containing (in mmol/L): K(+) 65, Na(+) 50, Ca(2+) 0.13, glutamate 0.1, and pH reduced to 6.6. Application of this medium promptly elevated [Ca(2+)](c) to about 30 micromol/L, but only if oxygen was removed, the respiratory chain was inhibited, or if the mitochondria were uncoupled. These high [Ca(2+)](c) elevations depended on external Ca(2+) and could not be prevented by inhibiting NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors, or gadolinium-sensitive channels. However, they could be prevented by removing external Na(+) or simultaneously inhibiting NMDA and AMPA/kainate receptors; 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), an inhibitor of plasmalemmal Na(+)/Ca(2+) exchanger, partly suppressed them. The data indicate that the [Ca(2+)](c) elevations to 30 micromol/L during AD result from Na(+) influx. Activation of either NMDA or AMPA/kainate channels provides adequate Na(+) influx to induce these [Ca(2+)](c) elevations, which are mediated by KB-R7943-sensitive and KB-R7943-resistant mechanisms.  相似文献   

5.
6.
The atrioventricular node (AVN) can act as a subsidiary cardiac pacemaker if the sinoatrial node fails. In this study, we investigated the effects of the Na-Ca exchange (NCX) inhibitor KB-R7943, and inhibition of the sarcoplasmic reticulum calcium ATPase (SERCA), using thapsigargin or cyclopiazonic acid (CPA), on spontaneous action potentials (APs) and [Ca(2+)](i) transients from cells isolated from the rabbit AVN. Spontaneous [Ca(2+)](i) transients were monitored from undialysed AVN cells at 37°C using Fluo-4. In separate experiments, spontaneous APs and ionic currents were recorded using the whole-cell patch clamp technique. Rapid application of 5 μM KB-R7943 slowed or stopped spontaneous APs and [Ca(2+)](i) transients. However, in voltage clamp experiments in addition to blocking NCX current (I(NCX)) KB-R7943 partially inhibited L-type calcium current (I(Ca,L)). Rapid reduction of external [Na(+)] also abolished spontaneous activity. Inhibition of SERCA (using 2.5 μM thapsigargin or 30 μM CPA) also slowed or stopped spontaneous APs and [Ca(2+)](i) transients. Our findings are consistent with the hypothesis that sarcoplasmic reticulum (SR) Ca(2+) release influences spontaneous activity in AVN cells, and that this occurs via [Ca(2+)](i)-activated I(NCX); however, the inhibitory action of KB-R7943 on I(Ca,L) means that care is required in the interpretation of data obtained using this compound.  相似文献   

7.
Proteolytic cleavage of the Na(+)/Ca(2+) exchanger (NCX) by calpains impairs calcium homeostasis, leading to a delayed calcium overload and excitotoxic cell death. However, it is not known whether reversal of the exchanger contributes to activate calpains and trigger neuronal death. We investigated the role of the reversal of the NCX in Ca(2+) dynamics, calpain activation and cell viability, in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-stimulated hippocampal neurons. Selective overactivation of AMPA receptors caused the reversal of the NCX, which accounted for approximately 30% of the rise in intracellular free calcium concentration ([Ca(2+)](i)). The NCX reverse-mode inhibitor, 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea (KB-R7943), partially inhibited the initial increase in [Ca(2+)](i), and prevented a delayed increase in [Ca(2+)](i). In parallel, overactivation of AMPA receptors strongly activated calpains and led to the proteolysis of NCX3. KB-R7943 prevented calpain activation, cleavage of NCX3 and was neuroprotective. Silencing of NCX3 reduced Ca(2+) uptake, calpain activation and was neuroprotective. Our data show for the first time that NCX reversal is an early event following AMPA receptor stimulation and is linked to the activation of calpains. Since calpain activation subsequently inactivates NCX, causing a secondary Ca(2+) entry, NCX may be viewed as a new suicide substrate operating in a Ca(2+)-dependent loop that triggers cell death and as a target for neuroprotection.  相似文献   

8.
Na(+)/Ca(2+) exchangers (NCXs) and members of the canonical transient receptor potential (TRPC) channels play an important role in Ca(2+) homeostasis in heart and brain. With respect to their overlapping expression and their role as physiological Ca(2+) influx pathways a functional discrimination of both mechanisms seems to be necessary. Here, the effect of the reverse-mode NCX inhibitor KB-R7943 was investigated on different TRPC channels heterologously expressed in HEK293 cells. In patch-clamp recordings KB-R7943 potently blocked currents through TRPC3 (IC(50)=0.46 microM), TRPC6 (IC(50)=0.71 microM), and TRPC5 (IC(50)=1.38 microM). 1-Oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry was nearly completely suppressed by 10 microM KB-R7943 in TRPC6-transfected cells. Thus, KB-R7943 is able to block receptor-operated TRP channels at concentrations which are equal or below those required to inhibit reverse-mode NCX activity. These data further suggest that the protective effects of KB-R7943 in ischemic tissue may, at least partly, be due to inhibition of TRPC channels.  相似文献   

9.
While it has been reported that a sparse sarcoplasmic reticulum (SR) and a low SR Ca(2+) pump density exist at birth, we and others have recently shown that significant amounts of Ca(2+) are stored in the neonatal rabbit heart SR. Here we try to determine developmental changes in SR Ca(2+) loading mechanisms and Ca(2+) pump efficacy in rabbit ventricular myocytes. SR Ca(2+) loading (load(SR)) and k(0.5) (Ca(2+) concentration at half-maximal SR Ca(2+) uptake) were higher and lower, respectively, in younger age groups. Inhibition of the L-type calcium current (I(Ca)) with 15 microM nifedipine dramatically reduced load(SR) in older but not in younger age groups. In contrast, subsequent inhibition of the Na(+)/Ca(2+) exchanger (NCX) with 10 microM KB-R7943 strongly reduced load(SR) in the younger but not the older age groups. Accordingly, the time integral of the inward NCX current (tail I(NCX)) elicited on repolarization was highly sensitive to nifedipine in the older groups and sensitive to KB-R7943 in the younger groups. Interestingly, slow SR loading took place in the presence of both nifedipine and KB-R7943 in all age groups, although it was less prominent in the older groups. We conclude that the SR loading capacity at the earliest postnatal stages is at least as large as that of adult myocytes. However, reverse-mode NCX plays a prominent role in SR Ca(2+) loading at early postnatal stages while I(Ca) is the main source of SR Ca(2+) loading at late postnatal and adult stages.  相似文献   

10.
11.
Hille C  Walz B 《Cell calcium》2006,39(4):305-311
Stimulation with the neurotransmitter dopamine causes an amplitude-modulated increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in epithelial cells of the ducts of cockroach salivary glands. This is completely attributable to a Ca(2+) influx from the extracellular space. Additionally, dopamine induces a massive [Na(+)](i) elevation via the Na(+)K(+)2Cl(-) cotransporter (NKCC). We have reasoned that Ca(2+)-entry is mediated by the Na(+)Ca(2+) exchanger (NCE) operating in the Ca(2+)-entry mode. To test this hypothesis, [Ca(2+)](i) and [Na(+)](i) were measured by using the fluorescent dyes Fura-2, Fluo-3, and SBFI. Inhibition of Na(+)-entry from the extracellular space by removal of extracellular Na(+) or inhibition of the NKCC by 10 microM bumetanide did not influence resting [Ca(2+)](i) but completely abolished the dopamine-induced [Ca(2+)](i) elevation. Simultaneous recordings of [Ca(2+)](i) and [Na(+)](i) revealed that the dopamine-induced [Na(+)](i) elevation preceded the [Ca(2+)](i) elevation. During dopamine stimulation, the generation of an outward Na(+) concentration gradient by removal of extracellular Na(+) boosted the [Ca(2+)](i) elevation. Furthermore, prolonging the dopamine-induced [Na(+)](i) rise by blocking the Na(+)/K(+)-ATPase reduced the recovery from [Ca(2+)](i) elevation. These results indicate that dopamine induces a massive NKCC-mediated elevation in [Na(+)](i), which reverses the NCE activity into the reverse mode causing a graded [Ca(2+)](i) elevation in the duct cells.  相似文献   

12.
The effect of Na+-K+ pump activation on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) was examined in mouse aorta and mouse aortic endothelial cells (MAECs). The Na+-K+ pump was activated by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM. In aortic rings, the Na+ ionophore monensin evoked EDR, and this EDR was inhibited by the Na+/Ca2+ exchanger (NCX; reverse mode) inhibitor KB-R7943. Monensin-induced Na+ loading or extracellular Na+ depletion (Na+ replaced by Li+) increased [Ca2+]i in MAECs, and this increase was inhibited by KB-R7943. Na+-K+ pump activation inhibited EDR and [Ca2+]i increase (K+-induced inhibition of EDR and [Ca2+]i increase). The Na+-K+ pump inhibitor ouabain inhibited K+-induced inhibition of EDR. Monensin (>0.1 microM) and the NCX (forward and reverse mode) inhibitors 2'4'-dichlorobenzamil (>10 microM) or Ni2+ (>100 microM) inhibited K+-induced inhibition of EDR and [Ca2+]i increase. KB-R7943 did not inhibit K+-induced inhibition at up to 10 microM but did at 30 microM. In current-clamped MAECs, an increase in [K+]o from 6 to 12 mM depolarized the membrane potential, which was inhibited by ouabain, Ni2+, or KB-R7943. In aortic rings, the concentration of cGMP was significantly increased by acetylcholine and decreased on increasing [K+]o from 6 to 12 mM. This decrease in cGMP was significantly inhibited by pretreating with ouabain (100 microM), Ni2+ (300 microM), or KB-R7943 (30 microM). These results suggest that activation of the forward mode of NCX after Na+-K+ pump activation inhibits Ca2+ mobilization in endothelial cells, thereby modulating vasomotor tone.  相似文献   

13.
Asterosap, a group of equally active isoforms of sperm-activating peptides from the egg jelly of the starfish Asterias amurensis, functions as a chemotactic factor for sperm. It transiently increases the intracellular cGMP level of sperm, which in turn induces a transient elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)). Using a fluorescent Ca(2+)-sensitive dye, Fluo-4 AM, we measured the changes in sperm [Ca(2+)](i) in response to asterosap. KB-R7943 (KB), a selective inhibitor of Na(+)/Ca(2+) exchanger (NCX), significantly inhibited the asterosap-induced transient elevation of [Ca(2+)](i), suggesting that asterosap influences [Ca(2+)](i) through activation of a K+-dependent NCX (NCKX). An NCKX activity of starfish sperm also shows K(+) dependency like other NCKXs. Therefore, we cloned an NCKX from the starfish testes and predicted that it codes for a 616 amino acid protein that is a member of the NCKX family. Pharmacological evidence suggests that this exchanger participates in the asterosap-induced Ca(2+) entry into sperm.  相似文献   

14.
Although inhibition of the sarcolemmal (SL) Na(+)-K(+)-ATPase is known to cause an increase in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) by stimulating the SL Na(+)/Ca(2+) exchanger (NCX), the involvement of other SL sites in inducing this increase in [Ca(2+)](i) is not fully understood. Isolated rat cardiomyocytes were treated with or without different agents that modify Ca(2+) movements by affecting various SL sites and were then exposed to ouabain. Ouabain was observed to increase the basal levels of both [Ca(2+)](i) and intracellular Na(+) concentration ([Na(+)](i)) as well as to augment the KCl-induced increases in both [Ca(2+)](i) and [Na(+)](i) in a concentration-dependent manner. The ouabain-induced changes in [Na(+)](i) and [Ca(2+)](i) were attenuated by treatment with inhibitors of SL Na(+)/H(+) exchanger and SL Na(+) channels. Both the ouabain-induced increase in basal [Ca(2+)](i) and augmentation of the KCl response were markedly decreased when cardiomyocytes were exposed to 0-10 mM Na(+). Inhibitors of SL NCX depressed but decreasing extracellular Na(+) from 105-35 mM augmented the ouabain-induced increase in basal [Ca(2+)](i) and the KCl response. Not only was the increase in [Ca(2+)](i) by ouabain dependent on the extracellular Ca(2+) concentration, but it was also attenuated by inhibitors of SL L-type Ca(2+) channels and store-operated Ca(2+) channels (SOC). Unlike the SL L-type Ca(2+)-channel blocker, the blockers of SL Na(+) channel and SL SOC, when used in combination with SL NCX inhibitor, showed additive effects in reducing the ouabain-induced increase in basal [Ca(2+)](i). These results support the view that in addition to SL NCX, SL L-type Ca(2+) channels and SL SOC may be involved in raising [Ca(2+)](i) on inhibition of the SL Na(+)-K(+)-ATPase by ouabain. Furthermore, both SL Na(+)/H(+) exchanger and Na(+) channels play a critical role in the ouabain-induced Ca(2+) increase in cardiomyocytes.  相似文献   

15.
The Na(+)/Ca(2+) exchanger (NCX) in plasma membranes either moves Ca(2+) out of (forward mode) or into (reverse mode) cells depending on the electrochemical gradient of these ions across the membrane. In this report, we characterize the sources responsible for the elevation in [Ca(2+)](i) elicited by reverse mode NCX activity. The elevation in [Ca(2+)](i) elicited by reverse mode NCX activity was significantly diminished by thapsigargin. KB-R7943 could only partially suppress the [Ca(2+)](i) change. Measurement of the [Ca(2+)](i) concurrent with reverse mode NCX current by perforated whole-cell patch showed that elevation in [Ca(2+)](i), but not the current, was inhibited by thapsigargin. The change in [Ca(2+)](i) response elicited by nicotinic acetylcholine receptor agonist was inhibited by thapsigargin. These suggest the importance of intracellular Ca(2+) stores in facilitating the [Ca(2+)](i) elevation elicited by reverse mode NCX activity under physiological condition.  相似文献   

16.
Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct inhibitory effects on Na(+)/Ca(2+) exchange.  相似文献   

17.
(Na(+)+K(+))-ATPase (NKA) mediates positive inotropy in the heart. Extensive studies have demonstrated that the reverse-mode Na(+)/Ca(2+)-exchanger (NCX) plays a critical role in increasing intracellular Ca(2+) concentration through the inhibition of NKA-induced positive inotropy by cardiac glycosides. Little is known about the nature of the NCX functional mode in the activation of NKA-induced positive inotropy. Here, we examined the effect of an NKA activator SSA412 antibody on (45)Ca influx in isolated rat myocytes and found that KB-R7943, a NCX reverse-mode inhibitor, fails to inhibit the activation of NKA-induced (45)Ca influx, suggesting that the Ca(2+) influx via the reverse-mode NCX does not mediate this process. Nifedipine, an L-type Ca(2+) channel (LTCC) inhibitor, completely blocks the activation of NKA-induced (45)Ca influx, suggesting that the LTCC is responsible for the moderate increase in intracellular Ca(2+). In contrast, the inhibition of NKA by ouabain induces 4.7-fold (45)Ca influx compared with the condition of activation of NKA. Moreover, approximately 70% of ouabain-induced (45)Ca influx was obstructed by KB-R7943 and only 30% was impeded by nifedipine, indicating that both the LTCC and the NCX contribute to the rise in intracellular Ca(2+) and that the NCX reverse-mode is the major source for the (45)Ca influx induced by the inhibition of NKA. This study provides direct evidence to demonstrate that the activation of NKA-induced Ca(2+) increase is independent of the reverse-mode NCX and pinpoints a mechanistic distinction between the activation and inhibition of the NKA-mediated Ca(2+) influx path ways in cardiomyocytes.  相似文献   

18.
Postmyocardial infarction (MI) rat myocytes demonstrated depressed Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. We investigated whether NCX1 downregulation in normal myocytes resulted in contractility changes observed in MI myocytes. Myocytes infected with adenovirus expressing antisense (AS) oligonucleotides to NCX1 had 30% less NCX1 at 3 days and 66% less NCX1 at 6 days. The half-time of relaxation from caffeine-induced contracture was twice as long in ASNCX1 myocytes. Sarcoplasmic reticulum (SR) Ca(2+)-ATPase abundance, SR Ca(2+) uptake, resting membrane potential, action potential amplitude and duration, L-type Ca(2+) current density and cell size were not affected by ASNCX1 treatment. At extracellular Ca(2+) concentration ([Ca(2+)](o)) of 5 mM, ASNCX1 myocytes had significantly lower contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents than control myocytes. At 0.6 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents were significantly higher in ASNCX1 myocytes. At 1.8 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes were not different between control and ASNCX1 myocytes. This pattern of contractile and [Ca(2+)](i) transient abnormalities in ASNCX1 myocytes mimics that observed in rat MI myocytes. We conclude that downregulation of NCX1 in adult rat myocytes resulted in decreases in both Ca(2+) influx and efflux during a twitch. We suggest that depressed NCX1 activity may partly account for the contractile abnormalities after MI.  相似文献   

19.
Inhibition of Na(+),K(+)-ATPase during NMDA applications greatly increased NMDA-induced excitotoxicity in primary cultures of forebrain neurons (FNs), but not in cerebellar granule cells (CGCs). Because Na(+),K(+)-ATPase inhibition promotes reversal of plasmalemmal Na(+)/Ca(2+) exchangers, we compared the activities of reversed K(+)-independent (NCX) and K(+)-dependent (NCKX) Na(+)/Ca(2+) exchangers in these cultures. To this end, we measured gramicidin-induced and Na(+)-dependent elevation in cytosolic [Ca(2+)] ([Ca(2+)](c)) that represents Ca(2+) influx via reversed NCX and NCKX; NCX activity was dissected out by removing external K(+). The [Ca(2+)](c) elevations mediated by NCX alone, and NCX plus NCKX combined, were 17 and 6 times more rapid in FNs than in CGCs, respectively. Northern blot analysis showed that FNs preferentially express NCX1 whereas CGCs expressed NCX3. Differences in expression of other isoforms (NCX2, NCKX2, NCKX3 and NCKX4) were less pronounced. We tested whether the NCX or NCKX family of exchangers contributes most to the toxic NMDA-induced Ca(2+) influx in depolarized neurons. We found that in FNs, inhibition of NCX alone was sufficient to significantly limit NMDA excitotoxicity, whereas in CGCs, inhibition of both NCX and NCKX was required. The data suggest that the high activity of NCX isoforms expressed in FNs, possibly NCX1, sensitizes these neurons to NMDA excitotoxicity.  相似文献   

20.
Although lysophosphatidic acid (LPA) is known to increase intracellularfree calcium concentration ([Ca(2+)](i)) in different cell types, the effect of LPA on the skeletal muscle cells is not known. The present study was therefore undertaken to examine the effect of LPA on the [Ca(2+)](i) in C2C12 cells. LPA induced a concentration and time dependent increase in [Ca(2+)](i), which was inhibited by VPC12249, VPC 32183 and dioctanoyl glycerol pyrophosphate, LPA1/3 receptor antagonists. Pertussis toxin, a G(i) protein inhibitor, also inhibited the LPA-induced increase in [Ca(2+)](i). Inhibition of tyrosine kinase activities with tyrphostin A9 and genistein also prevented the increase in [Ca(2+)](i) due to LPA. Likewise, wortmannin and LY 294002, phosphatidylinositol 3-kinase (PI3-K) inhibitors, inhibited [Ca(2+)](i) response to LPA. The LPA effect was also attenuated by ethylene glycolbis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), an extracellular Ca(2+) chelator, Ni(2+) and KB-R7943, inhibitors of the Na(+)-Ca(2+) exchanger; the receptor operated Ca(2+) channel (ROC) blockers, 2-aminoethoxydiphenyl borate and SK&F 96365. However, the L-type Ca(2+) channel blockers, verapamil and diltiazem; the store operated Ca(2+) channel blockers, La(3+) and Gd(3+); a sarcoplasmic reticulum calcium pump inhibitor, thapsigargin; an inositol trisphosphate receptor antagonist, xestospongin and a phospholipase C inhibitor, U73122, did not prevent the increase [Ca(2+)](i) due to LPA. Our data suggest that the LPA-induced increase in [Ca(2+)](i) might occur through G(i)-protein coupled LPA(1/3) receptors that may be linked to tyrosine kinase and PI3-K, and may also involve the Na(+)-Ca(2+) exchanger as well as the ROC. In addition, LPA stimulated C2C12 cell proliferation via PI3-K. Thus, LPA may be an important phospholipid in the regulation of [Ca(2+)](i) and growth of skeletal muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号