首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 653 毫秒
1.
A Gram-stain negative aerobic bacterium, designated YIM 77924T, was isolated from a geothermally heated soil sample collected at Rehai National Park, Tengchong, Yunnan province, south-west China. Growth was found to occur from 55 to 75 °C (optimum 65 °C), pH 6.0–8.0 (optimum pH 7.0) and 0–1 % NaCl (w/v). Cells were observed to be rod-shaped and the colonies convex, circular, smooth, yellow and non-transparent. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain YIM 77924T belongs to the genus Thermus. The 16S rRNA gene sequence similarity values between strain YIM 77924T and other species of the genus Thermus were all below 97 %. The polar lipids of strain YIM 77924T were determined to be aminophospholipid, phospholipid and glycolipid. The predominant respiratory quinone was determined to be MK-8 and the G+C content was 66.64 mol%. The major fatty acids identified were iso-C16:0, iso-C15:0, iso-C17:0 and C16:0. On the basis of the morphological and chemotaxonomic characteristics as well as genotypic data, strain YIM 77924T is proposed to represent a novel species, Thermus tengchongensis sp. nov., in the genus Thermus. The type strain is YIM 77924T (=KCTC 32025T = CCTCC AB2012063T).  相似文献   

2.
Yin  Ling-Zi  Li  Jia-Ling  Liu  Ze-Tao  Fang  Bao-Zhu  Wang  Pandeng  Luo  Xiao-Qing  Dong  Lei  Duan  Li  Li  Shan-Hui  Li  Wen-Jun 《Antonie van Leeuwenhoek》2022,115(1):59-68

Two novel species of the genus Deinococcus, designated SYSU M49105T and SYSU M42101T, were isolated from freshwater samples of the Pearl River estuary in Guangdong, China. Phylogenetic analysis using 16S rRNA gene sequence indicated that strains SYSU M49105T and SYSU M42101T showed the highest sequence similarities to Deinococcus aetherius JCM 11751 T (93.6%) and Deinococcus multiflagellatus NBRC 112888 T (97.3%), respectively. Cells of both strains were Gram-staining positive, aerobic, coccus-shaped, oxidase-negative and non-motile. The cell wall contained meso-diaminopimelic acid as their diagnostic diamino acid. MK-8 was the predominant respiratory quinone for both strains. The polar lipid profile of SYSU M49105T contained two unidentified phosphoglycolipids, nine unidentified glycolipids, and five unidentified polar lipids. SYSU M42101T had one unidentified phosphoglycolipid, nine unidentified glycolipids, one unidentified aminophospholipid and four unidentified polar lipids. The major fatty acids of strains SYSU M49105T and SYSU M42101T were summed feature 3 (C16:1 ω7c and/ or C16:1 ω6c) and C16:0. The G?+?C contents of the novel isolates based on genomic DNAs were 69.6% and 67.4%, respectively. On the basis of phenotypic, genotypic and phylogenetic data, strains SYSU M49105T and SYSU M42101T should be considered to represent two novel species in the genus Deinococcus, for which the names Deinococcus aestuarii sp. nov. and Deinococcus aquaedulcis sp. nov. were proposed with the type strains SYSU M49105T (=?KCTC 43258 T?=?CGMCC 1.18609 T) and SYSU M42101T (=?KCTC 43257 T?=?CGMCC 1.18614 T), respectively.

  相似文献   

3.
Spectra of five isolates (LMG 28358T, LMG 29879T, LMG 29880T, LMG 28359T and R-53705) obtained from gut samples of wild bumblebees of Bombus pascuorum, Bombus lapidarius and Bombus terrestris were grouped into four MALDI-TOF MS clusters. RAPD analysis revealed an identical DNA fingerprint for LMG 28359T and R-53705 which also grouped in the same MALDI-TOF MS cluster, while different DNA fingerprints were obtained for the other isolates.Comparative 16S rRNA gene sequence analysis of the four different strains identified Gilliamella apicola NCIMB 14804T as nearest neighbour species. Average nucleotide identity values of draft genome sequences of the four isolates and of G. apicola NCIMB 14804T were below the 96% threshold value for species delineation and all four strains and G. apicola NCIMB 14804T were phenotypically distinct. Together, the draft genome sequences and phylogenetic and phenotypic data indicate that the four strains represent four novel Gilliamella species for which we propose the names Gilliamella intestini sp. nov., with LMG 28358T as the type strain, Gilliamella bombicola sp. nov., with LMG 28359T as the type strain, Gilliamella bombi sp. nov., with LMG 29879T as the type strain and Gilliamella mensalis sp. nov., with LMG 29880T as the type strain.  相似文献   

4.
Exploration of unexplored habitats for novel actinobacteria with high bioactivity potential holds great promise in the search for novel entities. During the course of isolation of actinobacteria from desert soils, four actinobacteria, designated as 5K548T, 7K502T, 16K309T and 16K404T, were isolated from the Karakum Desert and their bioactivity potential as well as taxonomic provenances were revealed by comprehensive genome analyses. Pairwise sequence analyses of the 16S rRNA genes indicated that the four strains are representatives of putatively novel taxa within the prolific actinobacterial genus Saccharopolyspora. The strains have typical chemotaxonomic characteristics of the genus Saccharopolyspora by having meso-diaminopimelic acid as diagnostic diaminoacid, arabinose, galactose and ribose as whole-cell sugars. Consistent with this assignment, all of the isolates contained phosphatidylcholine in their polar lipid profiles and MK-9(H4) as the predominant menaquinone. The sizes of the genomes of the isolates ranged from 6.0 to 10.2 Mb and the associated G + C contents from 69.6 to 69.7 %. Polyphasic characterizations including determination of overall genome relatedness indices revealed that the strains are representatives of four novel species in the genus Saccharopolyspora. Consequently, isolates 5K548T, 7K502T, 16K404T and 16K309T are proposed as novel Saccharopolyspora species for which the names of Saccharopolyspora karakumensis sp. nov., Saccharopolyspora elongata sp. nov., Saccharopolyspora aridisoli sp. nov. and Saccharopolyspora terrae sp. nov. are proposed, respectively. Comprehensive genome analysis for biosynthetic gene clusters showed that the strains have high potential for novel secondary metabolites. Moreover, the strains harbour many antimicrobial resistance genes providing more evidence for their potentiality for bioactive metabolites.  相似文献   

5.
Two closely related, thermophilic bacteria, designated strains YIM 76954T and YIM 76947, were isolated from the Rehai Geothermal Field, Tengchong, Yunnan province, south-west China. Polyphasic approach and whole genome sequencing were used to determine the taxonomy status and genomic profiles of the novel strains. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates were closely related to Thermus scotoductus SE-1T (97.1% sequence similarity), and T. amyloliquefaciens YIM 77409T (96.6%). The strains could be differentiated from most recognized Thermus species by their whitish to slight reddish colony color, distinct DNA fingerprinting profiles and low ANI values. Cells stained Gram-negative, rod-shaped of diameter 0.2–0.5 μm and length 1.5–5.0 μm. Growth occurred at 50–75 °C, pH 6.0–9.0 and in the presence of up to 1.0% (w/v) NaCl concentration. Thiosulfate was found to enhance cell growth, besides improving the intensity of its colony color. Oxygen, nitrate, sulfur, and Fe(III) could be used as terminal electron acceptors for growth. MK-8 was the major respiratory menaquinone. Major fatty acids were iso-C17:0, iso-C15:0, anteiso-C17:0, and anteiso-C15:0. The genome size was 2.26 Mbp with 65.5% average GC content. A total of 2374 genes was predicted, comprising 2322 protein-coding and 52 RNA genes. On the basis of the polyphasic evidence presented, it is proposed that strain YIM 76954T represents a novel species of the genus Thermus, for which the name Thermus tenuipuniceus sp. nov. is proposed. The type strain is YIM 76954T (=JCM 30350T = KCTC 4677T).  相似文献   

6.
Lignocellulose is considered a major source of renewable energy that serve as an alternative to the fossil fuels. Members of the genus Clostridium are some of the many microorganisms that have the ability to degrade lignocellulose efficiently to sugar, which can be further converted to biofuel. In this study, we isolated twelve Clostridium strains from hot spring samples of Yunnan and Tibet, of which isolates SYSU GA15002T and SYSU GA17076 showed low 16S rRNA gene sequence identity profiles to any of the validly named Clostridium strains (<94.0%). Studies using a polyphasic taxonomy approach concluded that the two isolates represent one novel species of the genus Clostridium, for which we propose the name Clostridium thermarum sp. nov., with SYSU GA15002T as the type strain of the species. Isolate SYSU GA15002T has an optimum growth temperature at 45 °C. Fermentation of the substrates cellobiose, cellulose, xylan and untreated straw powder by this strain results in the production of ethanol, along with acetate and formate. The complete pathways for the conversion of cellulose and xylan to ethanol is also predicted from the genome of isolate SYSU GA15002T, which revealed a single step conversion of lignocellulosic biomass through consolidated bioprocessing. This paper is a comprehensive study encompassing isolation, polyphasic taxonomy, lignocellulose biodegradation and the genomic information of Clostridium in Yunnan-Tibet hot springs.  相似文献   

7.
The taxonomic positions of five Gram-negative, non-spore-forming and non-motile bacterial strains isolated from the rhizosphere of sand dune plants were examined using a polyphasic approach. The analysis of the 16S rRNA gene sequence indicated that all of the isolates fell into four distinct phylogenetic clusters belonging to the genus Chryseobacterium of the family Flavobacteriaceae. The 16S rRNA gene sequence similarities of isolates to mostly related type strains of Chryseobacterium ranged from 97.5% to 98.5%. All strains contained MK-6 as the predominant menaquinone, and iso-C15:0, iso-C17:0 3-OH and a summed feature of iso-C15:0 2-OH and/or C16:1 ω7c as the dominant fatty acids. Combined phenotypic, genotypic and chemotaxonomic data supported that they represented four novel species in the genus Chryseobacterium, for which the names Chryseobacterium hagamense sp. nov. (type strain RHA2-9T=KCTC 22545T=NBRC 105253T), Chryseobacterium elymi sp. nov. (type strain RHA3-1T=KCTC 22547T=NBRC 105251T), Chryseobacterium lathyri sp. nov. (type strain RBA2-6T=KCTC 22544T=NBRC 105250T), and Chryseobacterium rhizosphaerae sp. nov. (type strain RSB3-1T=KCTC 22548T=NBRC 105248T) are proposed.  相似文献   

8.

Thermus species are widespread in natural and artificial thermal environments. Two new yellow-pigmented strains, L198T and L423, isolated from Little Hot Creek, a geothermal spring in eastern California, were identified as novel organisms belonging to the genus Thermus. Cells are Gram-negative, rod-shaped, and non-motile. Growth was observed at temperatures from 45 to 75 °C and at salinities of 0–2.0% added NaCl. Both strains grow heterotrophically or chemolithotrophically by oxidation of thiosulfate to sulfate. L198T and L423 grow by aerobic respiration or anaerobic respiration with arsenate as the terminal electron acceptor. Values for 16S rRNA gene identity (≤ 97.01%), digital DNA–DNA hybridization (≤ 32.7%), OrthoANI (≤ 87.5%), and genome-to-genome distance (0.13) values to all Thermus genomes were less than established criteria for microbial species. The predominant respiratory quinone was menaquinone-8 and the major cellular fatty acids were iso-C15:0, iso-C17:0 and anteiso-C15:0. One unidentified phospholipid (PL1) and one unidentified glycolipid (GL1) dominated the polar lipid pattern. The new strains could be differentiated from related taxa by β-galactosidase and β-glucosidase activity and the presence of hydroxy fatty acids. Based on phylogenetic, genomic, phenotypic, and chemotaxonomic evidence, the novel species Thermus sediminis sp. nov. is proposed, with the type strain L198T (= CGMCC 1.13590T = KCTC XXX).

  相似文献   

9.
Liu  Ze-Tao  Liu  Lan  Xian  Wen-Dong  Lian  Zheng-Han  Dai  Jun-Yi  Fang  Bao-Zhu  Li  Meng-Meng  Lv  Ai-Ping  Luo  Zhen-Hao  Jiao  Jian-Yu  Li  Wen-Jun 《Antonie van Leeuwenhoek》2022,115(7):889-898

A thermophilic bacterium, designated strain SYSU G04325T, was isolated from a hot spring sediment in Yunnan, China. Polyphasic taxonomic analyses and whole-genome sequencing were used to determine the taxonomic position of the strain. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain SYSU G04325T shows high sequence similarity to Thermoflexibacter ruber NBRC 16677T (86.2%). The strain can be differentiated from other species of the family Thermoflexibacteraceae by its distinct phenotypic and genotypic characteristics. Cells of the strain SYSU G04325T were observed to be aerobic, Gram-stain negative and filamentous. Growth was found to occur optimally at 45 ºC and pH 7.0. In addition, the respiratory quinone was identified as menaquinone-7, while the major fatty acids (>?10%) were identified as iso-C15:0, iso-C17:0 and Summed Feature 9 (iso-C17:1ω9c). The polar lipids detected included phosphatidylethanolamine, three unidentified phospholipids, one unidentified glycolipid, five unidentified aminolipids and four unidentified polar lipids. The G?+?C content of the genomic DNA was determined to be 47.6% based on the draft genome sequence. On the basis of phenotypic, genotypic and phylogenetic data, strain SYSU G04325T is concluded to represent a novel species of a novel genus in the family Thermoflexibacteraceae, for which the name Rhodoflexus caldus gen. nov., sp. nov. is proposed. The type strain of Rhodoflexus caldus is SYSU G04325T (=?MCCC 1K06127T?=?KCTC 82848T).

  相似文献   

10.
A Gram negative, yellow pigmented, rod shaped bacterium designated as RLT was isolated from a hot water spring (90–98 °C) located at Manikaran in Northern India. The isolate grows at 60–80 °C (optimum, 70 °C) and at pH 7.0–9.0 (optimum pH 7.2). Phylogenetic analysis of 16S rRNA gene sequences and levels of DNA–DNA relatedness together indicate that the new isolate represents a novel species of the genus Thermus with closest affinity to Thermus thermophilus HB8T (99.5 %) followed by Thermus arciformis (96.4 %). A comparative analysis of partial sequences of housekeeping genes (HKG) further revealed that strain RLT is a novel species belonging to the genus Thermus. The melting G+C content of strain RLT was calculated as 68.7 mol%. The DNA–DNA relatedness value of strain RLT with its nearest neighbours (>97 %) was found to be less than 70 % indicating that strain RLT represents a novel species of the genus Thermus. MK-8 was the predominant respiratory quinone. The presence of characteristic phospholipid and glycolipid further confirmed that strain RLT belongs to the genus Thermus. The predominant fatty acids of strain RLT were iso-C17:0 (23.67 %) and iso-C15:0 (24.50 %). The results obtained after DNA–DNA hybridization, biochemical and physiological tests clearly distinguished strain RLT from its closely related species. Thus, strain RLT represents a novel species of the genus Thermus for which the name Thermus parvatiensis is proposed (=DSM 21745T= MTCC 8932T).

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0538-4) contains supplementary material, which is available to authorized users.  相似文献   

11.
A total of 26 Gram-negative, motile, gently curved, and rod-shaped isolates were recovered, during a study to determine the faeco-prevalence of Helicobacter spp. in urban wild birds. Pairwise comparisons of the 16S rRNA gene sequences indicated that these isolates belonged to the genus Helicobacter and phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolates were separated into two divergent groups. The first group consisted of 20 urease-positive isolates sharing the highest 16S rRNA gene sequence identity levels of 98.5–98.6% to H. mustelae ATCC 43772T, while the second group contained six urease-negative isolates with the sequence identity level of 98.5% to the type strain of H. pametensis ATCC 51478T. Five isolates were chosen and subjected to comparative whole-genome analysis. The phylogenetic analysis of the 16S rRNA, gyrA and atpA gene sequences showed that Helicobacter isolates formed two separate phylogenetic clades, differentiating the isolates from the other Helicobacter species. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses between strains faydin-H8T, faydin-H23T and their close neighbors H. anseris MIT 04-9362T and H. pametensis ATCC 51478T, respectively, confirmed that both strains represent novel species in the genus Helicobacter. The DNA G+C contents of the strains faydin-H8T and faydin-H23T are 32.0% and 37.6%, respectively. The results obtained for the characterization of the wild bird isolates indicate that they represent two novel species, for which the names Helicobacter anatolicus sp. nov., and Helicobacter kayseriensis sp. nov., are proposed, with faydin-H8T(=LMG 32237T = DSM 112312T) and faydin-H23T(=LMG 32236T = CECT 30508T) as respective type strains.  相似文献   

12.
Bifidobacterium is one of the dominating bacterial genera in the honey bee gut, and they are the key degrader of diet polysaccharides for the host. Previous genomic analysis shows that they belong to separate phylogenetic clusters and exhibited different functional potentials in hemicellulose digestion. Here, three novel strains from the genus Bifidobacterium were isolated from the guts of the honey bee (Apis mellifera). Phylogenomic analysis showed that the isolates could be grouped into four phylogenetic clusters. The average nucleotide identity values between strains from different clusters are <95%, while strains in Cluster IV belong to the characterized species Bifidobacterium asteroides. Carbohydrate-active enzyme annotation confirmed that the metabolic capacity for carbohydrates varied between clusters of strains. Cells are Gram-positive rods; they grew both anaerobically and in a CO2-enriched atmosphere. All strains grew at a temperature range of 20–42 °C, with optimum growth at 35 °C. The pH range for growth was 5–9. Strains from different phylogenetic clusters varied in multiple phenotypic and chemotaxonomic characterizations. Thus, we propose three novel species Bifidobacterium apousia sp. nov. whose type strain is W8102T (=CGMCC 1.18893 T = JCM 34587 T), Bifidobacterium choladohabitans sp. nov., whose type strain is B14384H11T (=CGMCC 1.18892 T = JCM 34586 T), and Bifidobacterium polysaccharolyticum sp. nov. whose type strain is W8117T (=CGMCC 1.18894 T = JCM 34588 T).  相似文献   

13.
Four yellow pigmented strains (91A-561T, 91A-576, 91A-593T, and JM-1085T) isolated from plant materials, showed 97.2–98.7 % 16S rRNA gene sequence similarities among each other and were studied in a polyphasic approach for their taxonomic allocation. Cells of all four isolates were rod-shaped and stained Gram-negative. Comparative 16S rRNA gene sequence analysis showed that the four bacteria had highest sequence similarities to Chryseobacterium formosense (97.2–98.7 %), Chryseobacterium gwangjuense (97.1–97.8 %), and Chryseobacterium defluvii (94.6–98.0 %). Sequence similarities to all other Chryseobacterium species were below 97.5 %. Fatty acid analysis of the four strains showed Chryseobacterium typical profiles consisting of major fatty acids C15:0 iso, C15:0 iso 2-OH/C16:1 ω7c, C17:1 iso ω9c, and C17:0 iso 3-OH, but showed also slight differences. DNA–DNA hybridizations with type strains of C. gwangjuense, C. formosense, and C. defluvii resulted in values below 70 %. Isolates 91A-561T and 91A-576 showed DNA–DNA hybridization values >80 % indicating that they belonged to the same species; but nucleic acid fingerprinting showed that the two isolates represent two different strains. DNA–DNA hybridization results and the differentiating biochemical and chemotaxonomic properties showed, that both strains 91A-561T and 91A-576 represent a novel species, for which the name Chryseobacterium geocarposphaerae sp. nov. (type strain 91A-561T=LMG 27811T=CCM 8488T) is proposed. Strains 91A-593T and JM-1085T represent two additional new species for which we propose the names Chyrseobacterium zeae sp. nov. (type strain JM-1085T=LMG 27809T, =CCM 8491T) and Chryseobacterium arachidis sp. nov. (type strain 91A-593T=LMG 27813T, =CCM 8489T), respectively.  相似文献   

14.
Several pure cultures of alkaliphilic haloaloarchaea were enriched and isolated from hypersaline soda lakes in southwestern Siberia using amylopectin and fructans as substrates. Phylogenomic analysis placed the isolates into two distinct groups within the class Halobacteria. Four isolates forming group 1 were closely related to a recently described Natranaeroarchaeum sulfidigenes and the other three strains forming group 2 represent a novel genus-level phylogenetic lineage. All isolates are saccharolytic archaea growing with various starch-like alpha-glucans including soluble starch, amylopectin, dextrin, glycogen, pullulane and cyclodextrin. In addition, group 1 can use levan while group 2 – inulin (plant storage beta-fructans). Group 1 strains can also grow anaerobically with either glucose or maltose using elemental sulfur as the electron acceptor. Both groups are moderately alkaliphilic with a pH range for growth from 7.2 to 9.3 (optimum between 8.0–8.8) and low Mg-demanding extreme halophiles growing optimally at 4 M total Na+. The major respiratory menaquinone is MK-8:8 and the core biphytanyl lipids are dominated by archaeol (C20-C20) and a less abundant extended archaeol (C20-C25) with PG and PGP-Me as polar groups. The four isolates of group 1 are suggested to be classified into a new species as Natranaeroarchaeum aerophilus sp. nov. (type strain AArc-St1-1T = JCM 32519T). The three isolates of group 2 are proposed to form a new genus and species for which the name Natronocalculus amylovorans gen. nov., sp. nov. is suggested (type strain AArc-St2T = JCM 32475T).  相似文献   

15.
Bacteria in the family Geobacteraceae have been proven to fill important niches in a diversity of anaerobic environments and global biogeochemical processes. Here, three bacterial strains in this family, designated Red875T, Red259T, and Red421T were isolated from river sediment and paddy soils in Japan. All of them are Gram-staining-negative, strictly anaerobic, motile, flagellum-harboring cells that form red colonies on agar plates and are capable of utilizing Fe(III)-NTA, Fe(III) citrate, ferrihydrite, MnO2, fumarate, and nitrate as electron acceptors with acetate, propionate, pyruvate, and glucose as electron donors. Phylogenetic analysis based on the 16S rRNA gene and 92 concatenated core proteins sequences revealed that strains Red259T and Red421T clustered with the type strains of Geomonas species, whereas strain Red875T formed an independent lineage within the family Geobacteraceae. Genome comparison based on  average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values clearly distinguished these three strains from other Geobacteraceae members, with lower values than the thresholds for species delineation. Moreover, strain Red875T also shared low average amino acid identity (AAI) and percentage of conserved proteins (POCP) values with the type species of the family Geobacteraceae. Based on these physiological, chemotaxonomic, and phylogenetic distinctions, we propose that strain Red875T (=NBRC 114290T = MCCC 1K04407T) represents a novel genus in the family Geobacteraceae, namely, Geomesophilobacter sediminis gen. nov., sp. nov., and strains Red259T (=NBRC 114288T = MCCC 1K05016T) and Red421T (=NBRC 114289T = MCCC 1K06216T) represent two novel independent species in the genus Geomonas, namely, Geomonas propionica sp. nov. and Geomonas anaerohicana sp. nov., respectively.  相似文献   

16.
Two Gram-stain-positive, small ellipsoidal cocci, non-motile, oxidase- and catalase-negative, and facultative anaerobic strains (UCMA15228T and UCMA17102) were isolated in France, from fermented apple juices (ciders). The 16S rRNA gene sequence was identical between the two isolates and showed 97 % similarity with respect to the closest related species Oenococcus oeni and O. kitaharae. Therefore, the two isolates were classified within the genus Oenococcus. The phylogeny based on the pheS gene sequences also confirmed the position of the new taxon. DNA–DNA hybridizations based on in silico genome-to-genome comparisons (GGDC) and Average Nucleotide Identity (ANI) values, as well as species-specific PCR, validated the novelty of the taxon. Various phenotypic characteristics such as the optimum temperature and pH for growth, the ability to metabolise sugars, the aptitude to perform the malolactic fermentation, and the resistance to ethanol and NaCl, revealed that the two strains are distinguishable from the other members of the Oenococcus genus. The combined genotypic and phenotypic data support the classification of strains UCMA15228T and UCMA17102 into a novel species of Oenococcus, for which the name O. sicerae sp. nov. is proposed. The type strain is UCMA15228T (=DSM107163T = CIRM-BIA2288T).  相似文献   

17.
18.
Four strains of rod-shaped gram-negative sulfur-oxidizing bacteria were isolated from Khoito-Gol hydrogen-sulfide springs in the eastern Sayan Mountains (Buryatia). The cells of the new isolates were motile by means of a single polar flagellum. The strains were obligately chemolithoautotrophic aerobes that oxidized thiosulfate (with the production of sulfur and sulfates) and hydrogen sulfide. They grew in a pH range of 6.8–9.5, with an optimum at pH 9.3 and in a temperature range of 5–39°C, with an optimum at 28–32°C. The cells contained ubiquinone Q-8. The DNA G+C content of the new strains was 62.3–64.2 mol %. According to the results of analysis of their 16S rRNA genes, the isolates belong to the genus Thiobacillus within the subclass Betaproteobacteria. However, the similarity level of nucleotide sequences of the 16S rRNA genes was insufficient to assign the isolates to known species of this genus. The affiliation to the genus Thiobacillus was confirmed by DNA-DNA hybridization of the isolates with the type strain of the type species of the genus Thiobacillus, T. thioparus DSM 505T (= ATCC 8158T). Despite the phenotypic similarity, the hybridization level was as low as 21–29%. In addition, considerable differences were revealed in the structure of the genes encoding RuBPC, the key enzyme of autotrophic CO2 assimilation, between the known Thiobacillus species and the new isolates. Based on molecular-biological features and certain phenotypic distinctions, the new isolates were assigned to a new Thiobacillus species, T. sajanensis sp. nov., with the type strain 4HGT (= VKM B-2365T).  相似文献   

19.
20.
Two halophilic archaeal strains, R30T and tADLT, were isolated from an aquaculture farm in Dailing, China, and from Deep Lake, Antarctica, respectively. Both have rod-shaped cells that lyse in distilled water, stain Gram-negative and form red-pigmented colonies. They are neutrophilic, require >120?g/l NaCl and 48–67?g/l MgCl2 for growth but differ in their optimum growth temperatures (30?°C, tADLT vs. 40?°C, R30T). The major polar lipids were typical for members of the Archaea but also included a major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1). The 16S rRNA gene sequences of the two strains are 97.4?% identical, show most similarity to genes of the family Halobacteriaceae, and cluster together as a distinct clade in phylogenetic tree reconstructions. The rpoB′ gene similarity between strains R30T and tADLT is 92.9?% and less to other halobacteria. Their DNA G?+?C contents are 62.4–62.9?mol?% but DNA–DNA hybridization gives a relatedness of only 44?%. Based on phenotypic, chemotaxonomic and phylogenetic properties, we describe two new species of a novel genus, represented by strain R30T (=?CGMCC 1.10593T?=?JCM 17270T) and strain tADLT (=?JCM 15066T?=?DSMZ 22187T) for which we propose the names Halohasta litorea gen. nov., sp. nov. and Halohasta litchfieldiae sp. nov., respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号