首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lacZ induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lacZ mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lacZ marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance marker revealed that all the three isolates could proliferate successfully in the rhizosphere, rhizoplane and endorhizosphere of maize, both at 30 and 60 days after seeding. Four antifungal compounds from fluorescent Pseudomonas sp. EM85, one from Bacillus sp. MR-11(2) and three from Bacillus sp. MRF were isolated, purified and tested in vitro and in thin layer chromatography bioassays. All these compounds inhibited R. solani, M. phaseolina, F. moniliforme, F. graminearum and F. solani strongly. Results indicated that antifungal antibiotics and/or fluorescent pigment of fluorescent Pseudomonas sp. EM85, and antifungal antibiotics of the bacilli along with the successful colonization of all the isolates might be involved in the biological suppression of the maize root diseases.  相似文献   

2.
Fluorescent pseudomonads that produce antibiotic 2,4-diacetylphloroglocinol (2,4-DAPG) are important group of PGRP that inhibit a broad spectrum of plant pathogenic fungi. Studying on genetic diversity of 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads has been shown with special importance. The first step to investigate the genetic diversity of these bacteria is detecting of the genes required for the biosynthesis of this antibiotic. The objectives of the current study were detection of phlD gene within fluorescent pseudomonads by a PCR-based assay, and comparison of phenotypic and genotypic characteristics of fluorescent pseudomonads with proven biocontrol potential against some soil-borne phytopathogenic fungi. We used a collection of 47 fluorescent Pseudomonas spp. some with known biological control activity against Macrophomina phaseolina, Rhizoctonia solani, Phytophthora nicotianae var. parasitica, Pythium sp. and Fusarium sp. in vitro and the potential to produce known secondary metabolites such as, siderophore, HCN and protease. The results indicated that 66, 40.42, 63.82,48.94 and 27.65% of strains revealed antagonistic activity against R. solani, M. phaseolina, Pythium sp., P. nicotianae and Fusarium sp., respectively. Rhizoctonia solani recognized as the most vulnerable fungus. Among 47 strains, 76.59, 97.87 and 17% of strains produced protease, siderophore and HCN, respectively. We could detect phlD gene in strains P-5, P-32, P-47. Strain CHA0 was used as positive control for the detection this gene. Overall, there was no obvious link between the existence of phlD gene and inhibition of fungal growth or production of the antifungal metabolites in vitro. But in some strains such as CHA0 and P-5, we saw a link between the existence of phlD and antifungal activities. Studying on detection and diversity of phlD provides a fundamental knowledge for developing a rapid genetic screening system to identify a potential biocontrol strains.  相似文献   

3.
A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lac Z induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lac Z mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lac Z marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance marker revealed that all the three isolates could proliferate successfully in the rhizosphere, rhizoplane and endorhizosphere of maize, both at 30 and 60 days after seeding. Four antifungal compounds from fluorescent Pseudomonas sp. EM85, one from Bacillus sp. MR-11(2) and three from Bacillus sp. MRF were isolated, purified and tested in vitro and in thin layer chromatography bioassays. All these compounds inhibited R. solani, M. phaseolina, F. moniliforme, F. graminearum and F. solani strongly. Results indicated that antifungal antibiotics and/or fluorescent pigment of fluorescent Pseudomonas sp. EM85, and antifungal antibiotics of the bacilli along with the successful colonization of all the isolates might be involved in the biological suppression of the maize root diseases.  相似文献   

4.
The molecular basis of antifungal toxin production by a fluorescent Pseudomonas strain EM 85 was studied. The bacterial strain showed in vitro inhibition of growth of Rhizoctonia solani. NTG mutagenesis of the wild type strain helped in the isolation of a antifungal-toxin-defective mutant AN 21. A genomic library of the wild type strain was constructed in the cosmid vector pLAFR 1 and maintained in an E. coli background. Complementation analysis with cosmid library resulted in the isolation of a cosmid clone which complemented the defective character in the mutant AN 21. The size of the complementing DNA fragment was found to be 23.5kb.  相似文献   

5.
The effect of two herbicides (paraquat and simazine on the antifungal activity of two fungicides (captan and mounsrin) against Rhizoctonia solani was studied. when the herbicides paraquat and simazine were applied to soil they altered the effectiveness of both fungicides in controlling R. solani , thus causing damping-off of cotton. Both herbicides increased the toxicity of both fungicides against mycelial growth of the fungus. In pot tests, seeds or soil treated with captan or mounsrin, gave better control of R. solani damping-off disease when the soil was treated with paraquat or simazine compared to untreated soil. Captan was, however, found to be more effective in controlling the disease than mounsrin.  相似文献   

6.
Two isolates of binucleate Rhizoctonia spp., previously selected for efficacy in suppression of Rhizoctonia solani and Pythium spp., as well as plant growth promotion, were incorporated into various solid substrate formulations. These formulated products were assayed at three doses in three glass-house experiments for biocontrol of damping-off diseases in Capsicum annuum. R. solani anastomosis group 4 or Pythium ultimum var. sporangiiferum were incorporated into pasteurized potting medium with each formulated binucleate Rhizoctonia product. All formulations were effective against both pathogens in at least two experiments, but some formulations of one isolate of binucleate Rhizoctonia did not give consistent control of R. solani in one experiment. The most consistent formulation, which provided control of both pathogens at all doses of binucleate Rhizoctonia, was the simple substrate of rice hulls. The implications for commercialization of a biocontrol product are discussed.  相似文献   

7.
Two isolates of Trichoderma koningii were evaluated for efficacy in control of damping-off diseases in seedlings of Capsicum annuum grown in pasteurized potting medium in a glasshouse. A selected isolate of binucleate Rhizoctonia and two fungicides were also included as standards for control of Rhizoctonia solani and Pythium ultimum var. sporangiiferum. Both isolates of T. koningii reduced seedling death caused by R. solani in one of two experiments, and by P. u. sporangii-ferum in two of three experiments. Neither isolate of T. koningii suppressed damping-off caused by either pathogen as consistently as the binucleate Rhizoctonia or fungicides. The implications of these results for commercial disease management are discussed.  相似文献   

8.
Hydrogen cyanide (HCN) is a secondary metabolite produced by many antagonistic Pseudomonas species. In the present study, the gene cluster encoding HCN synthesis in a newly isolated Pseudomonas fluorescens strain, In5, from South Greenland was investigated. Sequence analysis showed that the Greenlandic hcn gene cluster comprises a novel hcn cluster. Transposon mutagenesis of strain In5 resulted in mutants In5-2E1 and In5-1H7 with no production of HCN, and mutant In5-6B9 with reduced HCN synthesis. In mutant In5-2E1, the transposon was inserted into the hcnC gene; in mutant In5-1H7, the Tn5 insertion was found in a region upstream of a putative malate:quinone oxidoreductase gene (mqo); and in mutant In5-6B9, the transposon disrupted a probable enoyl-CoA hydratase/isomerase gene. In vitro inhibition experiments with In5 (wild type) and In5-2E1 (mutant) showed that in nitrogen-rich Luria-Bertani medium, strain In5 but not the hcn mutant In5-2E1 produced HCN and inhibited the growth of hyphae of Rhizoctonia solani and Pythium aphanidermatum . In contrast, when cultivating the strains in the carbohydrate-rich potato dextrose medium, neither of the strains produced any HCN, and thus, they were unable to inhibit hyphal growth of fungi. These experiments strongly indicate that the synthesis of HCN is highly dependent on the growth medium used.  相似文献   

9.
A soil isolate of Pseudomonas fluorescens (BL915) was shown to be an effective antagonist of Rhizoctonia solani-induced damping-off of cotton. Investigation of the biological basis of this antagonism revealed that the strain produces pyrrolnitrin, a secondary metabolite known to inhibit R. solani and other fungi. Mutants of strain BL915 that did not produce pyrrolnitrin and did not suppress damping-off of cotton by R. solani were generated by exposure to N-methyl-N′ -nitro-N-nitrosoguanidine. A gene region that was capable of restoring pyrrolnitrin production to the non-pyrrolnitrin-producing mutants and of conferring this ability upon two other P. fluorescens strains not otherwise known to produce this compound or to be capable of suppressing damping-off caused by R. solani was isolated from strain BL915. The non-pyrrolnitrin-producing strains (mutants of BL915 and the other two P. fluorescens strains) which synthesized pyrrolnitrin after the introduction of the gene region from strain BL915 were also shown to be equal to strain BL915 in their ability to suppress R. solani-induced damping-off of cotton. These results indicate that we have isolated from P. fluorescens BL915 a gene(s) that has a role in the synthesis of pyrrolnitrin and that the production of this compound has a role in the ability of this strain to control damping-off of cotton by R. solani.  相似文献   

10.
Fluorescent Pseudomonad spp. were isolated from the rhizosphere of potato plants (Algeria) by serial dilutions of rhizosphere soils on Kings B medium and were tested for their antifungal activity. The antifungal activity of the Pseudomonas isolated from Potatoes rhizosphere was tested against Pythium ultimum, Rhizoctonia solani and Fusarium oxysporum in dual culture with bacteria on PDA. The Petri dish was divided into tow, on one the bacteria was spread and on the opposite side fungal plugs were inoculated and incubated for one week. Fourteen bacteria were isolated; only one isolate inhibited the growth of Pythium ultimum, Rhizoctonia solani, Fusarium solani; Fusarium oxysporum f.sp. albedinis and Fusarium oxysporum f. sp. Lycopersici with inhibition zones of 39.9, 33.7, 30.8, 19.9 and 22.5 mm respectively.  相似文献   

11.
Both antibiotics and siderophores have been implicated in the control of soilborne plant pathogens by fluorescent pseudomonads. In Pseudomonas fluorescens 2–79, which suppresses take-all of wheat, the importance of the antibiotic phenazine-1-carboxylic acid was established with mutants deficient or complemented for antiobiotic production and by isolation of the antibiotic from the roots of wheat colonized by the bacteria. Genetic and biochemical studies of phenazine synthesis have focused on two loci; the first is involved in production of both anthranilic acid and phenazine-1-carboxylic acid, and the second encodes genes involved directly in phenazine synthesis. Because the antibiotic does not account fully for the suppressiveness of strain 2-79, additional mutants were analyzed to evaluate the role of the fluorescent siderophore and of an antifungal factor (Aff, identified as anthranilic acid) that accumulates when iron is limiting. Whereas strains producing only the siderophore conferred little protection against take-all, Aff+ strains were suppressive, but much less so than phenazine-producing strains. Iron-regulated nonsiderophore antibiotics may be produced by fluorescent pseudomonads more frequently than previously recognized, and could be partly responsible for beneficial effects that were attributed in the past to fluorescent siderophores.  相似文献   

12.
Fourteen strains of Pseudomonas fluorescens isolated from rhizosphere soil of rice were tested for their antagonistic effect towards Rhizoctonia solani, the rice sheath blight fungus. Among them, PfMDU2 was the most effective in inhibiting mycelial growth of R. solani in vitro. Production of chitinase, beta-1,3-glucanase, siderophores, salicylic acid (SA) and hydrogen cyanide (HCN) by P. fluorescens strains was evaluated. The highest beta-1,3-glucanase activity, siderophore production, SA production and HCN production were recorded with PfMDU2. A significant relationship between the antagonistic potential of P. fluorescens against R. solani and its level of beta-1,3-glucanase, SA and HCN was observed.  相似文献   

13.
Seven bacterial isolates screened from rhizosphere of common bean growing at Uttarakhand Himalaya showed potential plant growth promoting (PGP) and antagonistic activities. Based on 16S rRNA gene sequence the isolate BPR7 was identified as Bacillus sp. BPR7. The strain BPR7 produced IAA, siderophore, phytase, organic acid, ACC deaminase, cyanogens, lytic enzymes, oxalate oxidase, and solubilized various sources of organic and inorganic phosphates as well as potassium and zinc. Strain BPR7 strongly inhibited the growth of several phytopathogens such as Macrophomina phaseolina, Fusarium oxysporum, F. solani, Sclerotinia sclerotiorum, Rhizoctonia solani and Colletotricum sp. in vitro. Cell-free culture filtrate of strain BPR7 also caused colony growth inhibition of all test pathogens. PGP and antifungal activities of Bacillus sp. BPR7 suggest that it may be exploited as a potential bioinoculant agent for P. vulgaris.  相似文献   

14.
AIMS: To isolate endophytic Streptomyces strains from tomato and examine their antimicrobial activity. METHODS: Endophytic Streptomyces strains were isolated using surface-sterilization methods and identified by morphological characteristics. Antimicrobial activities were measured by the agar plate sensitivity method. Antifungal activity in vivo was measured by seedling mortality in infested soils. RESULTS: Twenty-one per cent of endophytic streptomycete isolates produced antibacterial metabolites and 41% produced antifungal metabolites in S medium. Sixty-five per cent of the most frequently isolated strains inhibited the growth of Rhizoctonia solani by the antibiosis assay but only 32% produced metabolites active against R. solani in S medium. Growth promotion and enhanced disease resistance of seedlings inoculated with Streptomyces sp. strain S30 were observed in tomato but not in cucumber seedlings. CONCLUSIONS: Endophytic Streptomyces spp. strains were successfully isolated using stringent methods and strain S30 promoted growth and enhanced resistance to R. solani in tomato seedlings. SIGNIFICANCE AND IMPACT OF THE STUDY: Endophytic streptomycetes showing antifungal activity in vitro and in vivo may indicate the potential for their use as biocontrol agents particularly of R. solani disease of tomato seedlings.  相似文献   

15.
The herbicide chlorimuron-ethyl has been applied widely for weed control in farmland, especially in soybean fields in China over the past decade, but the chronic effects of this herbicide on soil microorganisms, particularly Pseudomonas spp., is not well understood. Taking a continuously cropped soybean field in the town of Fuyuan—a soybean production base of Heilongjiang Province in Northeast China—as a case study, soil samples were collected from plots having received 0-, 5-, and 10-year applications of chlorimuron-ethyl (30 g active component of chlorimuron-ethyl/ha/year) to study the abundance and diversity of Pseudomonas spp. Meanwhile, an in vitro assay was used to examine the antifungal activities of isolated Pseudomonas spp. against soil-borne pathogens (Fusarium graminearum, Fusarium oxysporum, and Rhizoctonia solani) causing soybean root rot disease. The production of siderophore, hydrogen cyanide (HCN), and lytic enzymes (cellulase, pectinase, and chitinase) by Pseudomonas spp. was also investigated. With 5- and 10- year chlorimuron-ethyl application, the numbers of soil Pseudomonas spp. decreased from 121?×?102 CFU/g dry soil in the control to 40?×?102 CFU/g dry soil and 13?×?102 CFU/g dry soil, and the Shannon index values decreased from 6.23 to 3.71 and 1.73, respectively. The numbers of antifungal Pseudomonas spp. also decreased, and the proportions of Pseudomonas spp. with antifungal activities against the different test pathogens altered. All the antifungal Pseudomonas spp. could produce siderophore and HCN but not lytic enzymes. The results suggest that long-term application of chlorimuron-ethyl in continuously cropped soybean field had negative effects on the abundance and diversity of soil Pseudomonas spp., including species with different antifungal activities against pathogens. Siderophore and HCN rather than lytic enzymes formed the antifungal metabolites of Pseudomonas spp., and the number of antifungal Pseudomonas that can produce siderophore and HCN decreased markedly under application of chlorimuron-ethyl, especially after 10-year application.  相似文献   

16.
A new strain, SD12, was isolated from tannery waste polluted soil and identified as Pseudomonas aeruginosa on the basis of phenotypic traits and by comparison of 16S rRNA sequences. This bacterium exhibited broad-spectrum antagonistic activity against phytopathogenic fungi. The strain produced phosphatases, cellulases, proteases, pectinases, and HCN and also retained its ability to produce hydroxamate-type siderophore. A bioactive metabolite was isolated from P. aeruginosa SD12 and was characterized as 1-hydroxyphenazine ((1-OH-PHZ) by nuclear magnetic resonance (NMR) spectral analysis. The strain was used as a biocontrol agent against root rot and wilt disease of pyrethrum caused by Rhizoctonia solani. The stain is also reported to increase the growth and biomass of Plantago ovata. The purified compound, 1-hydroxyphenazine, also showed broad-spectrum antagonistic activity towards a range of phytopathogenic fungi, which is the first report of its kind.  相似文献   

17.
Mutants of Trichoderma harzianum with altered antibiotic production were isolated using ultraviolet light mutagenesis. These included strains whose activity in a Fusarium oxysporum spore germination assay was greater than twice that of the parental strain and one that had no detectable antifungal activity. Characterisation of extracellular metabolites of these strains using thin-layer chromatography and gas-liquid chromatography showed that the strains with high activity produced only elevated levels of a 6-n-pentyl pyrone, the antibiotic produced by the parental strain, but two new antifungal compounds. One of these has been identified as an isonitrile antibiotic. The nature of the interactions of the mutants with Fusarium oxysporum, Rhizoctonia solani, and Pythium ultimum was examined in an in vitro dual-plating assay using two media. High antibiotic production by two T. harzianum strains, BC10 and BC63, did increase inhibition of hyphal growth of R. solani and P. ultimum, but there was no correlation between increased antibiotic production and colonisation ability. In some cases the increased antibiotic levels appeared to impede colonisation of F. oxysporum and R. solani by the mutants. Slow growth rate also affected colonising ability. The types of interactions showed great variability depending on the nature of the T. harzianum isolate and on the test fungus.  相似文献   

18.
The Bacillus subtilis strain NCD-2 is an important biocontrol agent against cotton verticillium wilt and cotton sore shin in the field, which are caused by Verticillium dahliae Kleb and Rhizoctonia solani Kuhn, respectively. A mutant of strain NCD-2, designated M216, with decreased antagonism to V. dahliae and R. solani, was selected by mini-Tn10 mutagenesis and in vitro virulence screening. The inserted gene in the mutant was cloned and identified as the phoR gene, which encodes a sensor kinase in the PhoP/PhoR two-component system. Compared to the wild-type strain, the APase activities of the mutant was decreased significantly when cultured in low phosphate medium, but no obvious difference was observed when cultured in high phosphate medium. The mutant also grew more slowly on organic phosphate agar and lost its phosphatidylcholine-solubilizing ability. The suppression of cotton seedling damping-off in vivo and colonization of the rhizosphere of cotton also decreased in the mutant strain when compared with the wild type strain. All of these characteristics could be partially restored by complementation of the phoR gene in the M216 mutant.  相似文献   

19.
A study was conducted to investigate the possibility of involvement of chitinase and beta-1,3-glucanase of an antagonistic fluorescent Pseudomonas in growth suppression of phytopathogenic fungi, Phytophthora capsici and Rhizoctonia solani. Fluorescent Pseudomonas isolates GRC(3) and GRC(4) were screened for their antifungal potential against phytopathogenic fungi by using dual culture technique both on solid and liquid media. The percent inhibition was calculated. Various parameters were monitored for optimization of enzyme activities by fluorescent Pseudomonas GRC(3). The involvement of chitinases, beta-1,3-glucanases, and antifungal metabolites of nonenzymatic nature was correlated with the inhibition of P. capsici and R. solani. The results provide evidence for antibiosis as a mechanism for antagonism. The study also confirms that multiple mechanisms are involved in suppressing phytopathogens as evidenced by the involvement of chitinase and beta-1,3-glucanase in inhibition of R. solani but not P. capsici by isolate GRC3.  相似文献   

20.
The production of indole-3-acetic acid (IAA), by rhizobacteria, has been associated with plant growth promotion, especially root initiation and elongation. Isolate TO3 selected from 103 fluorescent pseudomonads, identified as Pseudomonas aeruginosa, showed maximum production of IAA. Isolate TO3 having biocontrol activity against Macrophomina phaseolina also showed production of siderophore and HCN was used to screen the role of bacterial IAA in reducing the level of charcoal rot disease occurrence in chickpea. Four IAA defective stable mutants of isolate TO3 having biocontrol activity against M. phaseolina were developed through 5-bromouracil mutagenesis. Mutant TO52 showed 76.47% reduction in production of IAA. Standard IAA was used in similar concentration as present in cell-free culture supernatant of wild isolate TO3 and its mutant TO52. The in vitro and in vivo study showed that IAA-defective mutant TO52 caused reduced biocontrol and plant growth promotory activity than wild isolate TO3. Standard IAA showed comparable biocontrol activity to the culture supernatant. To some extent better biocontrol and growth promotory activity in supernatant than standard IAA indicates the synergistic role of siderophore and HCN. The study clearly reports the role of bacterial IAA in suppression of charcoal rot disease of chickpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号