首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Detection of phlD gene in some fluorescent pseudomonads isolated from Iran and its relative with antifungal activities
Authors:Afsharmanesh Hamideh  Ahmadzadeh Masoud  Sharifi-Tehrani Abbas  Javan-Nikkhah Mohammad  Ghazanfari Keyvan
Institution:Faculty of Horticultural Sciences and Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. h_afsharmanesh@yahoo.com
Abstract:Fluorescent pseudomonads that produce antibiotic 2,4-diacetylphloroglocinol (2,4-DAPG) are important group of PGRP that inhibit a broad spectrum of plant pathogenic fungi. Studying on genetic diversity of 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads has been shown with special importance. The first step to investigate the genetic diversity of these bacteria is detecting of the genes required for the biosynthesis of this antibiotic. The objectives of the current study were detection of phlD gene within fluorescent pseudomonads by a PCR-based assay, and comparison of phenotypic and genotypic characteristics of fluorescent pseudomonads with proven biocontrol potential against some soil-borne phytopathogenic fungi. We used a collection of 47 fluorescent Pseudomonas spp. some with known biological control activity against Macrophomina phaseolina, Rhizoctonia solani, Phytophthora nicotianae var. parasitica, Pythium sp. and Fusarium sp. in vitro and the potential to produce known secondary metabolites such as, siderophore, HCN and protease. The results indicated that 66, 40.42, 63.82,48.94 and 27.65% of strains revealed antagonistic activity against R. solani, M. phaseolina, Pythium sp., P. nicotianae and Fusarium sp., respectively. Rhizoctonia solani recognized as the most vulnerable fungus. Among 47 strains, 76.59, 97.87 and 17% of strains produced protease, siderophore and HCN, respectively. We could detect phlD gene in strains P-5, P-32, P-47. Strain CHA0 was used as positive control for the detection this gene. Overall, there was no obvious link between the existence of phlD gene and inhibition of fungal growth or production of the antifungal metabolites in vitro. But in some strains such as CHA0 and P-5, we saw a link between the existence of phlD and antifungal activities. Studying on detection and diversity of phlD provides a fundamental knowledge for developing a rapid genetic screening system to identify a potential biocontrol strains.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号