首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Detection and analysis of genetic variation can help us to understand the molecular basis of various biological phenomena in plants. Since the entire plant kingdom cannot be covered under sequencing projects, molecular markers and their correlation to phenotypes provide us with requisite landmarks for elucidation of genetic variation. Genetic or DNA based marker techniques such as RFLP (restriction fragment length polymorphism), RAPD (random amplified polymorphic DNA), SSR (simple sequence repeats) and AFLP (amplified fragment length polymorphism) are routinely being used in ecological, evolutionary, taxonomical, phylogenic and genetic studies of plant sciences. These techniques are well established and their advantages as well as limitations have been realized. In recent years, a new class of advanced techniques has emerged, primarily derived from combination of earlier basic techniques. Advanced marker techniques tend to amalgamate advantageous features of several basic techniques. The newer methods also incorporate modifications in the methodology of basic techniques to increase the sensitivity and resolution to detect genetic discontinuity and distinctiveness. The advanced marker techniques also utilize newer class of DNA elements such as retrotransposons, mitochondrial and chloroplast based microsatellites, thereby revealing genetic variation through increased genome coverage. Techniques such as RAPD and AFLP are also being applied to cDNA-based templates to study patterns of gene expression and uncover the genetic basis of biological responses. The review details account of techniques used in identification of markers and their applicability in plant sciences.  相似文献   

2.
Restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers are being used widely for evaluating genetic relationships of crop germplasm. Differences in the properties of these two markers could result in different estimates of genetic relationships among some accessions. Nuclear RFLP markers detected by genomic DNA and cDNA clones and RAPD markers were compared for evaluating genetic relationships among 18 accessions from six cultivated Brassica species and one accession from Raphanus sativus. Based on comparisons of genetic-similarity matrices and cophenetic values, RAPD markers were very similar to RFLP markers for estimating intraspecific genetic relationships; however, the two marker types gave different results for interspecific genetic relationships. The presence of amplified mitochondrial and chloroplast DNA fragments in the RAPD data set did not appear to account for differences in RAPD- and RFLP-based dendrograms. However, hybridization tests of RAPD fragments with similar molecular weights demonstrated that some fragments, scored as identical, were not homologous. In all these cases, the differences occurred at the interspecific level. Our results suggest that RAPD data may be less reliable than RFLP data when estimating genetic relationships of accessions from more than one species.  相似文献   

3.
An analysis of restriction fragment length polymorphism (RFLP) using eight residential insertion sequence (IS) elements as hybridization probes reveals that the genome of resting bacteria is more dynamic than it was long believed. Escherichia coli strains stored in agar stabs for up to 30 yr accumulate a genetic variation which is correlated to time of storage. This spontaneous mutagenesis is often IS-specific, with particularly high activity for IS5, and thus suggests that transpositional DNA rearrangements are a major cause for the observed genetic polymorphism. The RFLP patterns indicate a burst of IS30 transposition to occur occasionally. Mutation rate is estimated by two different methods to roughly 10(-5) IS-related DNA rearrangements per bacterial chromosome per hour of storage for the eight IS elements studied. A pedigree derived from the RFLP data reveals that populations had evolved independently in each stab and showed no signs of convergence. Relics of an assumed ancestral population were still present in the stab cultures, but the elder stabs provided mostly mutants. These results indicate that cells placed under nutritional deprivation might have a highly plastic genome and suggest that such plasticity might play an adaptive role.   相似文献   

4.
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.  相似文献   

5.
Molecular mapping of quantitative trait loci in japonica rice.   总被引:1,自引:0,他引:1  
E D Redo?a  D J Mackill 《Génome》1996,39(2):395-403
Rice (Oryza sativa L.) molecular maps have previously been constructed using interspecific crosses or crosses between the two major subspecies: indica and japonica. For japonica breeding programs, however, it would be more suitable to use intrasubspecific crosses. A linkage map of 129 random amplified polymorphic DNA (RAPD) and 18 restriction fragment length polymorphism (RFLP) markers was developed using 118 F2 plants derived from a cross between two japonica cultivars with high and low seedling vigor, Italica Livorno (IL) and Labelle (LBL), respectively. The map spanned 980.5 cM (Kosambi function) with markers on all 12 rice chromosomes and an average distance of 7.6 cM between markers. Codominant (RFLP) and coupling phase linkages (among RAPDs) accounted for 79% of total map length and 71% of all intervals. This map contained a greater percentage of markers on chromosome 10, the least marked of the 12 rice chromosomes, than other rice molecular maps, but had relatively fewer markers on chromosomes 1 and 2. We used this map to detect quantitative trait loci (QTL) for four seedling vigor related traits scored on 113 F3 families in a growth chamber slantboard test at 18 degrees C. Two coleoptile, five root, and five mesocotyl length QTLs, each accounting for 9-50% of the phenotypic variation, were identified by interval analysis. Single-point analysis confirmed interval mapping results and detected additional markers significantly influencing each trait. About two-thirds of alleles positive for the putative QTLs were from the high-vigor parent, IL. One RAPD marker (OPAD13720) was associated with a IL allele that accounted for 18.5% of the phenotypic variation for shoot length, the most important determinant of seedling vigor in water-seeded rice. Results indicate that RAPDs are useful for map development and QTL mapping in rice populations with narrow genetic base, such as those derived from crosses among japonica cultivars. Other potential uses of the map are discussed. Key words : QTL mapping, RAPD, RFLP, seedling vigor, japonica, Oryza sativa.  相似文献   

6.
Gm2 is dominant gene conferring resistance to biotype 1 of gall midge (Orseolia oryzae Wood-Mason), the major dipteran pest of rice. The gene was mapped by restriction fragment length polymorphism (RFLP) analysis of a set of 40 recombinant inbred lines derived from a cross between the resistant variety Phalguna and the susceptible landrace ARC 6650. The gene is located on chromosome 4 at a position 1.3 cM from marker RG329 and 3.4 cM from RG476. Since the low (28%) polymorphism of this indica x indica cross hindered full coverage of the genome with RFLP markers, the mapping was checked by random amplified polymorphic DNA (RAPD)/bulked segregant analysis. Through the use of 160 RAPD primers, the number of polymorphic markers was increased from 43 to 231. Two RAPD primers amplified loci that co-segregated with resistance/susceptibility. RFLP mapping of these loci showed that they are located 0.7 cM and 2.0 cM from RG476, confirming the location of Gm2 in this region of chromosome 4. Use of these DNA markers will accelerate breeding for gall midge resistance by permitting selection of the Gm2 gene independently of the availability of the insect.  相似文献   

7.
AFLP analysis was performed between a pair of thermo-sensitive genic male sterile (TGMS) rice allelic mutant lines (5460S and 5460F). The reaction conditions for rice AFLP assay were optimized. The relative efficiencies for polymorphism detection of RFLP, RAPD and AFLP were compared. The results indicated that the efficiency for polymorphism detection in rice was in the order of AFLP > RAPD > RFLP, and also indicated that AFLP was a powerful DNA molecular marker technique for polymorphism detection, especially in the case of extremely low polymorphism, such as isogenic lines and allehc mutant hnes. Some of the AFLP products between the TGMS rice allehc mutant lines were cloned. Three of them were used as mixed probes to screen BAC library of rice line 5460S. 12 positive clones were screened out. In addition, the advantages and disadvantages of these three molecular marker systems were discussed.  相似文献   

8.
分子遗传标记技术及其在昆虫科学中的应用   总被引:19,自引:3,他引:16  
分子遗传标记是随着聚合酶链式反应 (PCR)和Southern杂交等分子生物学技术的飞速发展而出现的遗传学标记技术 ,它突破了以往形态标记 ,细胞学标记和同工酶标记等表达型标记的局限性 ,在揭示物种的遗传变异性研究中发挥着独特的优势。分子遗传标记目前已出现了几十种 ,可依其涉及的位点和反映的多态性的基础分为多位点分子标记和单位点分子标记 ,多位点分子标记反映核苷酸序列的多态性 ,单位点分子标记反映基因座上等位基因的多态性。本文对一些常用的分子标记技术的特点和它们在昆虫系统进化、昆虫分类、昆虫生态、生物防治和特定基因标记等研究中的应用作了介绍。  相似文献   

9.
The utility of RFLP (restriction fragment length polymorphism), RAPD (random-amplified polymorphic DNA), AFLP (amplified fragment length polymorphism) and SSR (simple sequence repeat, microsatellite) markers in soybean germplasm analysis was determined by evaluating information content (expected heterozygosity), number of loci simultaneously analyzed per experiment (multiplex ratio) and effectiveness in assessing relationships between accessions. SSR markers have the highest expected heterozygosity (0.60), while AFLP markers have the highest effective multiplex ratio (19). A single parameter, defined as the marker index, which is the product of expected heterozygosity and multiplex ratio, may be used to evaluate overall utility of a marker system. A comparison of genetic similarity matrices revealed that, if the comparison involved both cultivated (Glycine max) and wild soybean (Glycine soja) accessions, estimates based on RFLPs, AFLPs and SSRs are highly correlated, indicating congruence between these assays. However, correlations of RAPD marker data with those obtained using other marker systems were lower. This is because RAPDs produce higher estimates of interspecific similarities. If the comparisons involvedG. max only, then overall correlations between marker systems are significantly lower. WithinG. max, RAPD and AFLP similarity estimates are more closely correlated than those involving other marker systems.Abbreviations RFLP restriction fragment length plymorphism - RAPD random-amplified polymorphic DNA - AFLP amplified fragment length polymorphism - SSR simple sequence repeat - PCR polymerase chain reaction - TBE Tris-borate-EDTA buffer - MI marker index - SENA sum of effective numbers of alleles  相似文献   

10.
Hybrids between female Trichinella spiralis and male Trichinella britovi were constructed. Then, hybrid genotype was characterized by DNA markers including mitochondrial cytochrome c oxidase subunit I (CO I) gene, the gene encoding the 43-kDa excretory–secretory (ES) protein, and genomic DNA fragments specific for T. spiralis and T. britovi identified from random amplified polymorphism DNA (RAPD). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial CO I gene revealed that all hybrids carried a T. spiralis pattern. The same analysis of the gene encoding the 43-kDa ES protein showed that each hybrid carried both T. spiralis and T. britovi gene type simultaneously. In the analysis of genomic DNA using RAPD-derived PCR primers, some hybrids carried T. spiralis and T. britovi-specific RAPD markers, while others carried the RAPD marker of T. spiralis only.  相似文献   

11.
RAPD markers for constructing intraspecific tomato genetic maps   总被引:8,自引:0,他引:8  
The existing molecular genetic maps of the tomato, Lycopersicon spp, are constructed based on isozyme and RFLP polymorphisms between tomato species. These maps are useful for certain applications but have few markers that exhibit sufficient polymorphisms for intraspecific analysis and manipulations within the cultivated tomato. The purpose of this study was to investigate the relative potential of RAPD technology, as compared to isozymes and RFLPs, to generate polymorphic DNA markers within cultivated tomatoes. Sixteen isozymes and 25 RFLP clones that were known to detect polymorphism between L. esculentum and L. pennellii, and 313 random oligonucleotide primers were examined. None of the isozymes and only four of the RFLP clones (i.e., 16%) revealed polymorphism between the cultivated varieties whereas up to 63% of the RAPD primers detected one or more polymorphic DNA fragments between these varieties. All RAPD primers detected polymorphism between L. esculentum and L. pennellii genotypes. These results clearly indicate that RAPD technology can generate sufficient genetic markers exploiting sequence differences within cultivated tomatoes to facilitate construction of intraspecific genetic maps.Abbreviations RFLP restriction fragments length polymorphism - RAPD random amplified polymorphic DNA - PCR polymerase chain reaction - QTLs quantitative trait loci  相似文献   

12.
We investigated the genetic diversity of 96 Rhizobium meliloti strains isolated from nodules of four Medicago sativa varieties from distinct geographic areas and planted in two different northern Italian soils. The 96 isolates, which were phenotypically indistinguishable, were analyzed for DNA polymorphism with the following three methods: (i) a randomly amplified polymorphic DNA (RAPD) method, (ii) a restriction fragment length polymorphism (RFLP) analysis of the 16S-23S ribosomal operon spacer region, and (iii) an RFLP analysis of a 25-kb region of the pSym plasmid containing nod genes. Although the bacteria which were studied constituted a unique genetic population, a considerable level of genetic diversity was found. The new analysis of molecular variance (AMOVA) method was used to estimate the variance among the RAPD patterns. The results indicated that there was significant genetic diversity among strains nodulating different varieties. The AMOVA method was confirmed to be a useful tool for investigating the genetic variation in an intraspecific population. Moreover, the data obtained with the two RFLP methods were consistent with the RAPD results. The genetic diversity of the population was found to reside on the whole bacterial genome, as suggested by the RAPD analysis results, and seemed to be distributed on both the chromosome and plasmid pSym.  相似文献   

13.
RFLP、RAPD、AFLP在水稻农垦58S和1514中多态性比较   总被引:8,自引:1,他引:7  
本文用RFLP、RAPD和AFLP三种分子标记技术对农垦58SX1514组合及其F2极性集团进行了分析,比较了它们多成性和阳性的比率,结果显示,三种分子标记的多态性和与目的基因连锁的阳性比率分别为19.93%,5.23%;11.17%,0.76%和86.47%,7.52%。AFLP的多态性比率和阳性比率均为最高。分析探讨了三种分子标记技术的优缺点及其在区间高分辩率作图和筛选与目的基因连锁标记中的运  相似文献   

14.
微卫星DNA标记技术及其在植物研究中的应用   总被引:3,自引:0,他引:3  
微卫星DNA(或简单重复序列,simplesequencerepeats,SSR)是继RFLP、RAPD等分子标记后出现的第二代分子标记技术。随着分子生物学的发展,微卫星标记技术在植物基因组中的应用越来越广泛。由于SSR具有多态性高,呈共显性遗传,遵守孟德尔式分离,在数量上没有生物学的限制,实验操作简单,对样品质量要求不高等特点,因此被广泛用于植物遗传图谱的构建、基因定位、构建指纹图谱、遗传多样性及物种进化与亲缘关系的研究等方面。  相似文献   

15.
I Paran  R Kesseli  R Michelmore 《Génome》1991,34(6):1021-1027
Near-isogenic lines were used to identify restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers linked to genes for resistance to downy mildew (Dm) in lettuce. Two pairs of near-isogenic lines that differed for Dm1 plus Dm3 and one pair of near-isogenic lines that differed for Dm11 were used as sources of DNA. Over 500 cDNAs and 212 arbitrary 10-mer oligonucleotide primers were screened for their ability to detect polymorphism between the near-isogenic lines. Four RFLP markers and four RAPD markers were identified as linked to the Dm1 and Dm3 region. Dm1 and Dm3 are members of a cluster of seven Dm genes. Marker CL922 was absolutely linked to Dm15 and Dm16, which are part of this cluster. Six RAPD markers were identified as linked to the Dm11 region. The use of RAPD markers allowed us to increase the density of markers in the two Dm regions in a short time. These regions were previously only sparsely populated with RFLP markers. The rapid screening and identification of tightly linked markers to the target genes demonstrated the potential of RAPD markers for saturating genetic maps.  相似文献   

16.
R. V. Kesseli  I. Paran    R. W. Michelmore 《Genetics》1994,136(4):1435-1446
A detailed genetic map has been constructed from the F(2) population of a single intraspecific cross of Lactuca sativa (n = 9). It comprises 319 loci, including 152 restriction fragment length polymorphism (RFLP), 130 random amplified polymorphic DNA (RAPD), 7 isozyme, 19 disease resistance, and 11 morphological markers. Thirteen major, four minor linkage groups and several unlinked markers are identified for this genome which is estimated to be approximately 1950 cM. RFLP and RAPD markers show similar distributions throughout the genome and identified similar levels of polymorphism. RAPD loci were much quicker to identify but more difficult to order. Procedures for generating accurate genetic maps and their limitations are described.  相似文献   

17.
A genetic linkage map for radiata pine (Pinus radiata D. Don) has been constructed using segregation data from a three-generation outbred pedigree. A total of 208 loci were analyzed including 165 restriction fragment length polymorphism (RFLP), 41 random amplified polymorphic DNA (RAPD) and 2 microsatellite markers. The markers were assembled into 22 linkage groups of 2 or more loci and covered a total distance of 1382 cM. Thirteen loci were unlinked to any other marker. Of the RFLP loci that were mapped, 93 were detected by loblolly pine (P. taeda L.) cDNA probes that had been previously mapped or evaluated in that species. The remaining 72 RFLP loci were detected by radiata pine probes from a PstI genomic DNA library. Two hundred and eighty RAPD primers were evaluated, and 41 loci which were segregating in a 11 ratio were mapped. Two microsatellite markers were also placed on the map. This map and the markers derived from it will have wide applicability to genetic studies in P. radiata and other pine species.  相似文献   

18.
A phenotypically polymorphic barley (Hordeum vulgare L.) mapping population was developed using morphological marker stocks as parents. Ninety-four doubled-haploid lines were derived for genetic mapping from an F1 using the Hordeum bulbosum system. A linkage map was constructed using 12 morphological markers, 87 restriction fragment length polymorphism (RFLP), five random amplified polymorphic DNA (RAPD), one sequence-tagged site (STS), one intron fragment length polymorphism (IFLP), 33 simple sequence repeat (SSR), and 586 amplified fragment length polymorphism (AFLP) markers. The genetic map spanned 1,387 cM with an average density of one marker every 1.9 cM. AFLP markers tended to cluster on centromeric regions and were more abundant on chromosome 1 (7H). RAPD markers showed a high level of segregation distortion, 54% compared with the 26% observed for AFLP markers, 27% for SSR markers, and 18% for RFLP markers. Three major regions of segregation distortion, based on RFLP and morphological markers, were located on chromosomes 2 (2H), 3 (3H), and 7 (5H). Segregation distortion may indicate that preferential gametic selection occurred during the development of the doubled-haploid lines. This may be due to the extreme phenotypes determined by alleles at morphological trait loci of the dominant and recessive parental stocks. Several molecular markers were found to be closely linked to morphological loci. The linkage map reported herein will be useful in integrating data on quantitative traits with morphological variants and should aid in map-based cloning of genes controlling morphological traits. Received: 23 August 2000 / Accepted: 15 December 2000  相似文献   

19.
DNA microsatellites are ubiquitously present in eukaryotic genomes [30] and represent a vast source of highly informative markers [30, 33, 34, 2]. We describe in this article a (GGC)n microsatellite which is widely distributed in eukaryotic genomes. Using polymerase chain reaction (PCR) techniques and DNA sequencing, we demonstrated for the first time in plant species that a (GGC)n microsatellite locus is moderately polymorphic. Six alleles are present at this locus in rice and length polymorphisms are caused by variation in the number of tandem GGC repeats. By scoring a backcross mapping population, we were able to demonstrate that this locus is stably inherited and does not link to any known RFLP markers on the rice RFLP map. Our results suggest that DNA microsatellites should be useful in plants for construction of genetic linkage maps, extension of the existing genetic linkage maps, linkage analysis of disease and pest resistance genes, and the study of population genetics.  相似文献   

20.
T. Naas  M. Blot  W. M. Fitch    W. Arber 《Genetics》1994,136(3):721-730
Bacterial subclones recovered from an old stab culture of Escherichia coli K-12 revealed a high degree of genetic diversity, which occurred in spite of a very reduced rate of propagation during storage. This conclusion is based on a pronounced restriction fragment length polymorphism (RFLP) detected upon hybridization with internal fragments of eight resident insertion sequences (IS). Genetic diversity was dependent on the IS considered and, in many cases, a clear consequence of IS transposition. IS5 was particularly active in the generation of variation. All subclones in which IS30 had been active testify to a burst of IS30 transposition. This was correlated with a loss of prototrophy and a reduced growth on rich media. A pedigree of the entire clone could be drawn from the RFLP patterns of the subclones. Out of 118 subclones analyzed, 68 different patterns were found but the putative ancestral population had disappeared. A few patterns were each represented by several subclones displaying improved fitness. These results offer insights into the role of IS elements in the plasticity of the E. coli genome, and they further document that enzyme-mediated DNA rearrangements do occur in resting bacterial cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号