首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interferon (IFN)-gamma plays an essential role in host defense against infection with Mycobacterium tuberculosis, and its synthesis is critically regulated by interleukin (IL)-12, IL-18 and the recently identified IL-23. The present study was designed to determine the roles of these cytokines in IFN-gamma-mediated host defenses against M. tuberculosis. For this purpose, we compared host protective responses in IL-12p40 and IL-18 double-knockout (DKO) mice (which lacked both IL-12/IL-18 and also IL-23) and IFN-gamma gene-disrupted (GKO) mice. DKO mice were more resistant to the infection than GKO mice, as indicated by their extended survival and reduced live colony numbers in spleen, liver and lung. IFN-gamma was detected by ELISA in liver and lung homogenates, but not in spleen and serum, and in all organs by RT-PCR in DKO mice at comparable or reduced levels to those in wild-type mice. IFN-gamma production was reduced by depletion of CD4+ T cells, but not of natural killer (NK), NKT, gammadeltaT and dendritic cells. Neutralization of IFN-gamma or TNF-alpha by specific monoclonal antibodies (mAbs) significantly shortened the survival time of the infected DKO mice. Furthermore, anti-TNF-alpha mAb partially attenuated IFN-gamma synthesis in the liver of these mice. Finally, the expression level of inducible nitric oxide synthase (iNOS) mRNA in the spleen, liver and lung was considerable in DKO mice but only marginal or undetected in GKO mice. Our results indicate the presence of IL-12-, IL-18- and IL-23-independent host protective responses against mycobacterial infection mediated by IFN-gamma, which was secreted from helper T cells.  相似文献   

2.
BACKGROUND: Interferon (IFN)-gamma is a key to protective immunity against a variety of intracellular bacterial infections, including Chlamydia trachomatis. Interleukin (IL)-18, a recently identified Th1 cytokine, together with IL-12 is a strong stimulator for IFN-gamma production. We investigated the relative roles of IL-18 and IL- 12 in protective immunity to C. trachomatis mouse pneumonitis (MoPn) infection using gene knockout (KO) and wild-type (WT) mice. MATERIALS AND METHODS: Mice were intranasally infected with C. trachomatis MoPn and protective immunity was assessed among groups of mice by daily body weight changes, lung growth of MoPn, and histopathological appearances at day 10 postinfection. The corresponding immune responses for each group of mice at the same postinfection time point were evaluated by measuring antigen-specific antibody isotype responses and cytokine profiles. RESULTS: Our results showed that IL-18 deficiency had little or no influence on clearance of MoPn from the lung, although KO mice exhibited slightly more severe inflammatory reactions in lung tissues, as well as reduced systemic and local IFN-gamma production, compared with WT mice. Results with IL-18 KO mice were in sharp contrast to those observed with IL-12 KO mice that showed substantially reduced clearance of MoPn from the lungs, substantial reductions of antigen-specific systemic and lung IFN-gamma production, decreased ratio of MoPn-specific immunoglobulin G (IgG)2a/IgG1, and severe pathological changes in the lung with extensive polymorphonuclear, instead of mononuclear, cell infiltration. Exogenous IL-12 or IL-18 was able to increase IFN-gamma production in IL-18 KO mice; whereas, only exogenous IL-12, but not IL-18, enhanced IFN-gamma production in IL-12 KO mice. Caspase-1 is the key protease for activation of IL-18 precursor into the bioactive form, and caspase-1 KO mice also displayed similar bacterial clearance and body weight loss to that in WT mice at early stages of MoPn infection. This further confirmed that IL-18 was not essential for host defense against chlamydia infection. CONCLUSIONS: These results suggest that IL-12, rather than IL-18, plays the dominant role in the development of protective immunity against chlamydia lung infection, although both cytokines are involved in the in vivo regulation of IFN-gamma production.  相似文献   

3.
The aim of this study was to examine the contribution of IL-18 in host defense against infection caused by Cryptococcus neoformans in mice with defective IL-12 production. Experiments were conducted in mice with a targeted disruption of the gene for IL-12p40 subunit (IL-12p40-/- mice). In these mice, host resistance was impaired, as shown by increased number of organisms in both lungs and brains, compared with control mice. Serum IFN-gamma was still detected in these mice at a considerable level (20-30% of that in control mice). The host resistance was moderately impaired in IL-12p40-/- mice compared with IFN-gamma-/- mice. Neutralizing anti-IFN-gamma mAb further increased the lung burdens of organisms. In addition, treatment with neutralizing anti-IL-18 Ab almost completely abrogated the production of IFN-gamma and also impaired the host resistance. Host resistance in IL-12p40-/- IL-18-/- mice was more profoundly impaired than in IL-12p40-/- mice. Administration of IL-12 as well as IL-18 increased the serum levels of IFN-gamma and significantly restored the reduced host resistance. Spleen cells obtained from infected IL-12p40-/- mice did not produce any IFN-gamma upon restimulation with the same organisms, while those from infected and IL-12-treated mice produced IFN-gamma. In contrast, IL-18 did not show such effect. Finally, depletion of NK cells by anti-asialo GM1 Ab mostly abrogated the residual production of IFN-gamma in IL-12p40-/- mice. Our results indicate that IL-18 contributes to host resistance to cryptococcal infection through the induction of IFN-gamma production by NK cells, but not through the development of Th1 cells, under the condition in which IL-12 synthesis is deficient.  相似文献   

4.
Listeria monocytogenes (LM), a facultative intracellular Gram-positive bacterium, often causes lethal infection of the host. In this study we investigated the molecular mechanism underlying LM eradication in the early phase of infection. Upon infection with LM, both IL-12 and IL-18 were produced, and then they synergistically induced IFN-gamma production, leading to normal LM clearance in the host. IFN-gamma knockout (KO) mice were highly susceptible to LM infection. IL-12/IL-18 double knockout mice were also highly susceptible. Their susceptibility was less than that of IFN-gamma KO mice, but more than that of single IL-12 or IL-18 KO mice. Mice deficient in myeloid differentiation factor 88 (MyD88), an essential adaptor molecule used by signal transduction pathways of all members of the Toll-like receptor (TLR) family, showed an inability to produce IL-12 and IFN-gamma following LM infection and were most susceptible to LM. Furthermore, MyD88-deficient, but not IFN-gamma-deficient, Kupffer cells could not produce TNF-alpha in response to LM in vitro, indicating the importance of MyD88-dependent TNF-alpha production for host defense. As TLR2 KO, but not TLR4 KO, mice showed partial impairment in their capacity to produce IL-12, IFN-gamma, and TNF-alpha, TLR2 activation partly contributed to the induction of IL-12-mediated IFN-gamma production. These results indicated a critical role for TLRs/MyD88-dependent IL-12/TNF-alpha production and for IL-12- and IL-18-mediated IFN-gamma production in early phase clearance of LM.  相似文献   

5.
Interleukin (IL)-12 is a critical cytokine in the T helper (Th)1 response and host defense against intracellular microorganisms, while its role in host resistance to extracellular bacteria remains elusive. In the present study, we elucidated the role of IL-12 in the early-phase host defense against acute pulmonary infection with Streptococcus pneumoniae, a typical extracellular bacterium, using IL-12p40 gene-disrupted (IL-12p40KO) mice. IL-12p40KO mice were highly susceptible to S. pneumoniae infection, as indicated by the shortened survival time, which was completely restored by the replacement therapy with recombinant (r) IL-12, and increased bacterial counts in the lung. In these mice, recruitment of neutrophils in the lung was significantly attenuated when compared to that in wild-type (WT) mice, which correlated well with the reduced production of macrophage inflammatory protein (MIP-2) and tumor necrosis factor (TNF)-alpha in the infected tissues at the early phase of infection. In vitro synthesis of both cytokines by S. pneumoniae-stimulated lung leukocytes was significantly lower in IL-12p40KO mice than in WT mice, and addition of rIL-12 or interferon (IFN)-gamma restored the reduced production of MIP-2 and TNF-alpha in IL-12p40KO mice. Neutralizing anti-IFN-gamma monoclonal antibody (mAb) significantly decreased the effect of rIL-12. Anti-IFN-gamma mAb shortened the survival time of infected mice and reduced the recruitment of neutrophils and production of MIP-2 and TNF-alpha in the lungs. Our results indicated that IL-12p40 plays a critical role in the early-phase host defense against S. pneumoniae infection by promoting the recruitment of neutrophils to the infected tissues.  相似文献   

6.
A possible protective role of IL-18 in host defense against blood-stage murine malarial infection was studied in BALB/c mice using a nonlethal strain, Plasmodium yoelii 265, and a lethal strain, Plasmodium berghei ANKA. Infection induced an increase in mRNA expression of IL-18, IL-12p40, IFN-gamma, and TNF-alpha in the case of P. yoelii 265 and an increase of IL-18, IL-12p40, and IFN-gamma in the case of P. berghei ANKA. The timing of mRNA expression of IL-18 in both cases was consistent with a role in the induction of IFN-gamma protein expression. Histological examination of spleen and liver tissues from infected controls treated with PBS showed poor cellular inflammatory reaction, massive necrosis, a large number of infected parasitized RBCs, and severe deposition of hemozoin pigment. In contrast, IL-18-treated infected mice showed massive infiltration of inflammatory cells consisting of mononuclear cells and Kupffer cells, decreased necrosis, and decreased deposition of the pigment hemozoin. Treatment with rIL-18 increased serum IFN-gamma levels in mice infected with both parasites, delayed onset of parasitemia, conferred a protective effect, and thus increased survival rate of infected mice. Administration of neutralizing anti-IL-18 Ab exacerbated infection, impaired host resistance and shortened the mean survival of mice infected with P. berghei ANKA. Furthermore, IL-18 knockout mice were more susceptible to P. berghei ANKA than were wild-type C57BL/6 mice. These data suggest that IL-18 plays a protective role in host defense by enhancing IFN-gamma production during blood-stage infection by murine malaria.  相似文献   

7.
In this study, we investigated the role of endogenous IL-12 in protective immunity against blood-stage P. chabaudi AS malaria using IL-12 p40 gene knockout (KO) and wild-type (WT) C57BL/6 mice. Following infection, KO mice developed significantly higher levels of primary parasitemia than WT mice and were unable to rapidly resolve primary infection and control challenge infection. Infected KO mice had severely impaired IFN-gamma production in vivo and in vitro by NK cells and splenocytes compared with WT mice. Production of TNF-alpha and IL-4 was not compromised in infected KO mice. KO mice produced significantly lower levels of Th1-dependent IgG2a and IgG3 but a higher level of Th2-dependent IgG1 than WT mice during primary and challenge infections. Treatment of KO mice with murine rIL-12 during the early stage of primary infection corrected the altered IgG2a, IgG3, and IgG1 responses and restored the ability to rapidly resolve primary and control challenge infections. Transfer of immune serum from WT mice to P. chabaudi AS-infected susceptible A/J mice completely protected the recipients, whereas immune serum from KO mice did not, as evidenced by high levels of parasitemia and 100% mortality in recipient mice. Furthermore, depletion of IgG2a from WT immune serum significantly reduced the protective effect of the serum while IgG1 depletion had no significant effect. Taken together, these results demonstrate the protective role of a Th1-immune response during both acute and chronic phases of blood-stage malaria and extend the immunoregulatory role of IL-12 to Ab-mediated immunity against Plasmodium parasites.  相似文献   

8.
Interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta) regulate CD4+ T cell interferon-gamma (IFN-gamma) secretion in schistosome granulomas. The role of IL-12 was determined using C57BL/6 and CBA mice. C57BL/6 IL-4-/- granuloma cells were stimulated to produce IFN-gamma when cultured with IL-10 or TGF-beta neutralizing monoclonal antibody. In comparison, C57BL/6 wild-type (WT) control granuloma cells produced less IFN-gamma. IL-12, IL-18, and soluble egg antigen stimulated IFN-gamma release from C57BL/6 IL-4-/- and WT mice. IFN-gamma production in C57 IL-4-/- and WT granulomas was IL-12 dependent, because IL-12 blockade partly abrogated IFN-gamma secretion after stimulation. All granuloma cells released IL-12 (p70 and p40), and IL-12 production remained constant after anti-TGF-beta, anti-IL-10, recombinant IL-18, or antigen stimulation. C57 WT and IL-4-/- mouse granuloma cells expressed IL-12 receptor (IL-12R) beta1-subunit mRNA but little beta2 mRNA. TGF-beta or IL-10 blockade did not influence beta1 or beta2 mRNA expression. CBA mouse dispersed granuloma cells released no measurable IFN-gamma, produced IL-12 p70 and little p40, and expressed IL-12R beta2 and little beta1 mRNA. In T helper 2 (Th2) granulomas of C57BL/6 WT and IL-4-/- mice, cells produce IL-12 (for IFN-gamma production) and IL-10 and TGF-beta modulate IFN-gamma secretion via mechanisms independent of IL-12 and IL-12R mRNA regulation. We found substantial differences in control of granuloma IFN-gamma production and IL-12 circuitry in C57BL/6 and CBA mice.  相似文献   

9.
Mycobacterial infection in MyD88-deficient mice   总被引:7,自引:0,他引:7  
MyD88 is an adaptor protein that plays a major role in TLR/IL-1 receptor family signaling. To understand the role of MyD88 in the development of murine tuberculosis in vivo, MyD88 knockout (KO) mice aerially were infected with Mycobacterium tuberculosis. Infected MyD88 mice were not highly susceptible to M. tuberculosis infection, but they developed granulomatous pulmonary lesions with neutrophil infiltration which were larger than those in wild-type (WT) mice (P < 0.01). The pulmonary tissue levels of mRNA for iNOS and IL-18 were slightly lower, but levels of mRNA for IL-1 beta, IL-2, IL-4, IL-6, IL-10, IFN-gamma, and TGF-beta were higher in MyD88 KO mice. IFN-gamma, TNF-alpha, IL-1 beta, and IL-12 also were high in the sera of MyD88 KO mice. There were no statistically significant differences in the expression of TNF-alpha, IL-12, and ICAM-1 mRNA between MyD88 KO and WT mice. Thus, MyD88 deficiency did not influence the development of murine tuberculosis. NF-kappa B activity was similar in the alveolar macrophages from the lung tissues of MyD88 KO and WT mice. Also, there may be a TLR2-specific, MyD88-independent IL-1 receptor/TLR-mediated pathway to activate NF-kappa B in the host defense against mycobacterial infection.  相似文献   

10.
IL-4 is required for defense against mycobacterial infection   总被引:9,自引:0,他引:9  
Although the involvement of T helper (Th1) cells is central to protection against intracellular bacteria, including Mycobacterium tuberculosis, the involvement of Th2 cells, characterized by potent interleukin (IL)-4 secretion in mycobacterial infection is still unclear. In order to clarify the role of IL-4 in murine tuberculosis, IL-4-deficient mutant mice, IL-4 knockout (IL-4 KO) mice, were utilized. The mice were infected with H37Rv, Kurono or BCG Pasteur via an airborne infection route by placing them in the exposure chamber of a Middlebrook airborne infection apparatus. Their capacity to control mycobacterial growth, granuloma formation, cytokine secretion, and nitric oxide (NO) production were examined. These mice developed large granulomas, but not necrotic lesions in the lungs, liver or spleen (P<0.05). This was consistent with a significant increase in lung colony-forming units (CFU). Compared with levels in wild-type mice, upon stimulation with mycobacteria, splenic IL-10 levels were low and IL-6 levels were intermediate, but interferon (IFN)-gamma and IL-12 levels were significantly higher. IL-18 levels were within the normal range. The level of NO production by alveolar macrophages of the IL-4 KO mice was similar to that of the wild-type mice. Granulomatous lesion development by IL-4 KO mice was inhibited significantly by treatment with exogenous recombinant IL-4. These findings were not specific to the IL-4 KO mice used. Our data show that IL-4 may play a protective role in defense against mycobacteria, although IFN-gamma and TNF-alpha play major roles in it. Our data do not rule out an IFN-gamma-independent function of IL-4 in controlling tuberculosis.  相似文献   

11.
Optimal protective effects for defense against infection require orchestration of immune responses spanning multiple host compartments and divergent local regulation at particular sites. During murine cytomegalovirus infections known to target spleen and liver, IL-12-induced IFN-gamma from NK cells is crucial for resistance. However, the roles for IL-18 and/or IL-12 in regulating hepatic IFN-gamma responses, as compared with systemic or splenic responses, have not been defined. In this report, mice genetically deficient in either IL-18 or IL-12p35 exhibited up to 95% reductions in systemic and splenic IFN-gamma responses. Surprisingly, IFN-gamma responses were preserved in the livers of IL-18-deficient, but not IL-12p35-deficient, mice. Cytokine requirements for host survival also differed. Under conditions where mice lacking IL-12p35 exhibited 100% mortality, those lacking IL-18 survived. Taken together, our results delineate contrasting compartmental requirements for IL-18 and suggest that preservation of local, hepatic IFN-gamma production is critical for host defense during murine cytomegalovirus challenge.  相似文献   

12.
IL-18 is an important cofactor in Th1 immune responses and it has additional roles in inflammation. Recent reports suggest the contribution of IL-18 to immune responses may vary between mouse strains and immune contexts. We investigated the contribution of IL-18 to T-cell activation and joint inflammation in Ag-induced arthritis (AIA) in C57Bl/6 mice. AIA and cutaneous delayed-type hypersensitivity (DTH) reactions were induced in wild-type (WT) and IL-18-/- C57Bl/6 mice, and Ag-specific T-cell proliferation and IFN-gamma and IL-4 production were measured. The humoral immune response was measured as serum antibody to the disease-initiating Ag, methylated BSA (mBSA). Splenocyte production of IL-6 was measured by ELISA. To confirm the dependence of this model on Th1-cell-mediated immunity, IL-12p40-/- mice were similarly studied. WT mice developed synovitis, joint effusion, cartilage destruction and bone damage associated with induction of DTH, and in vitro Ag-specific T-cell proliferation and IFN-gamma production. Unexpectedly, IL-18-/- mice developed AIA and indices of T-cell activation were similar to those of WT mice. In contrast, IL-12p40-/- mice did not develop AIA, DTH or T-cell activation. WT and IL-18-/- mice, but not IL-12p40-/- mice, developed significantly increased serum antibody to mBSA compared with naive controls. WT and IL-18-/- splenocytes produced high levels of IL-6, whereas IL-12p40-/- cells had significantly lower IL-6 production compared with both. In conclusion, IL-18 is redundant both as a Th1 response cofactor and inflammatory cytokine, whereas IL-12p40-/- is a key cytokine, in AIA in C57Bl/6 mice.  相似文献   

13.
Mice exposed to sublethal endotoxemia develop short-term endotoxin tolerance, a state characterized by decreased monokine production and enhanced protection against endotoxic lethality. We confirmed that TNF-alpha production is markedly impaired in endotoxin-tolerant mice and additionally found 2- to 6-fold decreases in serum IFN-gamma in these animals following endotoxin challenge. The IFN-gamma deficiency of endotoxin tolerance correlated with 8-fold decreases in the bioactive p40/p35 heterodimeric form of IL-12. In contrast, total circulating IL-12 p40 was reduced by only 30-50%. Endotoxin-tolerant mice were less responsive to IL-12 than control mice, as evidenced by 3-fold lower levels of IFN-gamma inducible in vivo when rIL-12 was administered at the time of endotoxin challenge. Similarly, spleen cell cultures of endotoxin-tolerant mice produced 3-fold less IFN-gamma in the presence of optimal concentrations of both IL-12 and IL-18. Finally, levels of IL-12R beta 2 subunit mRNA and the percent composition of NK lymphocytes in the spleen were both decreased in endotoxin-tolerant mice relative to controls. We conclude that endotoxin-tolerant mice are profoundly impaired in their ability to produce IFN-gamma in response to endotoxin and that this is associated with acquired defects in both the production of circulating IL-12 heterodimer response and the response to IL-12 by NK cells.  相似文献   

14.
Using interleukin (IL)-18 deficient (IL-18(-/-)) mice, we examined the role of IL-18 in the host resistance and Th1 response against infection with Cryptococcus neoformans. Fungal clearance in the lung was reduced in IL-18(-/-) mice, although there was no significant change in the level of dissemination to the brain. The DTH response, as determined by footpad swelling, was also diminished in IL-18(-/-) mice compared to control wild-type (WT) mice. The levels of IL-12 and interferon (IFN)-gamma in the sera were significantly lower in IL-18(-/-) mice than in WT mice. Spleen cells from infected WT mice produced a high level of IFN-gamma upon stimulation with the microbe, while only a low level of IFN-gamma production was detected in spleen cells from infected IL-18(-/-) mice. Administration of IL-18 almost completely restored the reduced response in IL-18(-/-) mice, while IL-12 showed a marginal effect. These results demonstrated the important role of IL-18 in the resistance and Th1 response of mice to C. neoformans by potentiating the production of IFN-gamma.  相似文献   

15.
Although thymus-independent type 2 antigens generally do not undergo Ig class switching from IgM to IgG, pneumococcal polysaccharide vaccine (PPV) induces the production of serotype-specific IgG. How this happens remains unclear, however. In the present study, PPV immunization induced production of IgG as well as IgM specific for a serotype 3-pneumococcal polysaccharide in the sera of wild-type (WT) mice, but this phenomenon was significantly reduced in Dectin-2 knockout (KO) mice. Immunization with PPV caused IL-12p40 production in WT mice, but this response was significantly reduced in Dectin-2KO mice. Likewise, immunization with PPV activated natural killer T (NKT) cells in WT mice but not in Dectin-2KO mice. Furthermore, administration of α-galactosylceramide, recombinant (r)IL-12 or rIFN-γ improved the reduced IgG levels in Dectin-2KO mice, and treatment with neutralizing anti-IFN-γ mAb resulted in the reduction of IgG synthesis in PPV-immunized WT mice. Transfer of spleen cells from PPV-immunized WT mice conferred protection against pneumococcal infection on recipient mice, whereas this effect was cancelled when the transferred spleen cells were harvested from PPV-immunized Dectin-2KO mice. These results suggest that the detection of PPV antigens via Dectin-2 triggers IL-12 production, which induces IFN-γ synthesis by NKT cells and subsequently the production of serotype-specific IgG.  相似文献   

16.
Host control of Mycobacterium tuberculosis is dependent on the activation of CD4+ T cells secreting IFN-gamma and their recruitment to the site of infection. The development of more efficient vaccines against tuberculosis requires detailed understanding of the induction and maintenance of T cell immunity. Cytokines important for the development of cell-mediated immunity include IL-12 and IL-23, which share the p40 subunit and the IL-12Rbeta1 signaling chain. To explore the differential effect of IL-12 and IL-23 during M. tuberculosis infection, we used plasmids expressing IL-23 (p2AIL-23) or IL-12 (p2AIL-12) alone in dendritic cells or macrophages from IL-12p40(-/-) mice. In the absence of the IL-12/IL-23 axis, immunization with a DNA vaccine expressing the M. tuberculosis Ag85B induced a limited Ag-specific T cell response and no control of M. tuberculosis infection. Co-delivery of p2AIL-23 or p2AIL-12 with DNA85B induced strong proliferative and IFN-gamma-secreting T cell responses equivalent to those observed in wild-type mice immunized with DNA85B. This response resulted in partial protection against aerosol M. tuberculosis; however, the protective effect was less than in wild-type mice owing to the requirement for IL-12 or IL-23 for the optimal expansion of IFN-gamma-secreting T cells. Interestingly, bacillus Calmette-Guérin immune T cells generated in the absence of IL-12 or IL-23 were deficient in IFN-gamma production, but exhibited a robust IL-17 secretion associated with a degree of protection against pulmonary infection. Therefore, exogenous IL-23 can complement IL-12 deficiency for the initial expansion of Ag-specific T cells and is not essential for the development of potentially protective IL-17-secreting T cells.  相似文献   

17.
Early IFN-alpha/beta production, followed by the development of a viral-specific CTL response, are critical factors in limiting the level of murine gamma-herpesvirus-68 (gammaHV-68) infection. Development of a long-lived CTL response requires T cell help, and these CTLs most likely function to limit the extent of infection following reactivation. The importance of IL-12 in the development and/or activity of Th1 cells and CTLs is well documented, and we investigated the kinetics and magnitude of gammaHV-68-induced IL-12 production. Following intranasal infection, IL-12 and IL-23 mRNA expression was up-regulated in lung and spleen and lung, respectively, followed by increased levels of IL-12p40 in lung homogenates and sera. Exposure of cultured macrophages or dendritic cells to gammaHV-68 induced secretion of IL-12, suggesting that these cells might be responsible for IL-12 production in vivo. gammaHV-68 infection of mice made genetically deficient in IL-12p40 expression (IL-12p40(-/-)) resulted in a leukocytosis and splenomegaly that was significantly less than that observed in syngeneic C57BL/6 mice. IL-12p40(-/-) mice showed increased levels of infectious virus in the lung, but only at day 9 postinfection. Increased levels of latent virus in the spleen at day 15 postinfection were also observed in IL-12p40(-/-) mice when compared with syngeneic C57BL/6 mice. An overall reduction in gammaHV-68-induced IFN-gamma production was observed in IL-12p40(-/-) mice, suggesting that most of the viral-induced IFN-gamma in C57BL/6 mice was IL-12 dependent. Taken together, these results suggest that gammaHV-68-induced IL-12 contributes to the pathophysiology of viral infection while also functioning to limit viral burden.  相似文献   

18.
Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-gamma, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways.  相似文献   

19.
Respiratory syncytial virus-induced bronchiolitis has been linked to the development of allergy and atopic asthma. IL-12 and possibly IL-18 are central mediators orchestrating Th1 and/or Th2 immune responses to infection. To determine a possible role for IL-12 in regulating the immune response to acute respiratory syncytial virus infection, IL-12p40 gene-targeted (IL-12p40-/-) and wild-type mice were intratracheally infected with respiratory syncytial virus, and lung inflammatory and immune responses were assessed. Lung inflammation and mucus production were increased in the airways of IL-12p40-/- mice as compared with those of wild-type mice, concurrent with increased levels of the Th2 effector cytokines IL-5 and IL-13. Respiratory syncytial virus clearance and levels of Th1 effector cytokine IFN-gamma were not altered. Interestingly, IL-18, another mediator of IFN-gamma production, was significantly increased in the lungs of IL-12p40-/- mice early during the course of infection. Abrogation of IL-18-mediated signaling in IL-12p40-/- mice further enhanced Th2 immune response and mucus production in the airways during respiratory syncytial virus infection but failed to modulate IFN-gamma production or viral clearance. These findings implicate a role for IL-12 and IL-18 in modulating respiratory syncytial virus-induced airway inflammation distinct from that of viral clearance.  相似文献   

20.
Host responses to Pneumocystis carinii infection mediate impairment of pulmonary function and contribute to the pathogenesis of pneumonia. IL-10 is known to inhibit inflammation and reduce the severity of pathology caused by a number of infectious organisms. In the present studies, IL-10-deficient (IL-10 knockout (KO)) mice were infected with P. carinii to determine whether the severity of pathogenesis and the efficiency of clearance of the organisms could be altered in the absence of IL-10. The clearance kinetics of P. carinii from IL-10 KO mice was significantly enhanced compared with that of wild-type (WT) mice. This corresponded to a more intense CD4(+) and CD8(+) T cell response as well as an earlier neutrophil response in the lungs of IL-10 KO mice. Furthermore, IL-12, IL-18, and IFN-gamma were found in the bronchoalveolar lavage fluids at earlier time points in IL-10 KO mice suggesting that alveolar macrophages were activated earlier than in WT mice. However, when CD4(+) cells were depleted from P. carinii-infected IL-10 KO mice, the ability to enhance clearance was lost. Furthermore, CD4-depleted IL-10 KO mice had significantly more lung injury than CD4-depleted WT mice even though the intensity of the inflammatory responses was similar. This was characterized by increased vascular leakage, decreased oxygenation, and decreased arterial pH. These data indicate that IL-10 down-regulates the immune response to P. carinii in WT mice; however, in the absence of CD4(+) T cells, IL-10 plays a critical role in controlling lung damage independent of modulating the inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号