首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Summary The gill secondary lamellae are generally covered with epithelial cells whose outer surfaces form numerous microvilli. The surface of the primary lamellae is characterised by microridges. A particular type of surface sculpturing seems to be associated with given cell boundaries.Further evidence for the derivation of the air tube and fans which guard its entrance by modification of the basic gill structure has been obtained from both the gross surface architecture and microstructure of the individual cell surfaces. Secondary lamellae are represented by stubby projections which generally have a biserial arrangement. The outer surfaces of the epithelia overlying the capillaries of these respiratory islets are coated with microvilli as in the secondary lamellae. On the other hand, the relatively smooth-surfaced lanes between groups of respiratory islets have a microridged surface similar to that of the primary gill lamellae.It is suggested that previous estimates of surface area, and consequently diffusing capacities of the air-breathing organ, have been low in view of the increased surface, due to both their gross and microstructure. Estimates for gill surface area may need very little correction as the spaces between the microvilli and microridges are probably filled with mucus under normal conditions.We thank Mr. John Clements for his excellent technical assistance and the Department of Botany, Bristol University for the use of their scanning electron microscope  相似文献   

2.
SEM studies were made on the gills of freshwater mullets,Rhinomugil corsula andSicamugil cascasia, to correlate surface ultrastructure of various gill units with their probable functions. Two types of lamellated gill rakers of the former fish are suited for plankton feeding and the short, stumpy and transversely beaded gill rakers of the latter reflect the varied food and feeding habit of the fish.R. corsula has numerous mucous glands on the epithelium covering the gill arch and gill filaments,S. cascasia has fewer. In accordance with the differences in the density and distribution of the mucous glands, the microridged epithelial cells also show variations in their architectural plan. In both species the epithelium of the secondary lamellae is smooth, probably an adaptation for better gaseous exchange.  相似文献   

3.
The respiratory organs of Amphipnous cuchia comprise a pair of aicsacs, vestigial gill filaments borne on second gill arch and vascular folds of the third gill arch. The volume of each air-sac, its surface area and its reltionship with the body weight of the fish have been determined. The air-sac is lined by a respiratory mucosa which is composed of vascular and non-vascular areas. Each vascular area, called here the ‘respiratory islet,’ studded with hundreds of vascular rosettes, which are formed of collagenous material and supported by endothelial cells. Pilaster cells are absent. The ‘islets’ are covered over by a single layer of squamous type of epithelial cells. The non-vascular areas (lanes') are the stratified part of the respiratory epithelium and contain a large number of mucous glands which secrete mainly acid mucopolysaccharides. The vascularisation of the gills have been studied by India ink injection methods. The secondary gill lamellae are absent, their place being taken up by coiled vascular loops. A quantitative estimation of haemoglobin in blood of ‘cuchia’ and other air- and water-breathing fishes have been made by colorimetric method and the results have been discussed in relation to their habit and habitats. The cranial muscles which are involved in respiration of ‘cuchia’ and the mechanics of muscle action in breathing have been described.  相似文献   

4.
Morphological features of the gill and opercular epithelia of tilapia (Oreochromis mossambicus) have been compared in fish acclimated to either fresh water (FW) or hypersaline water (60 S) by scanning electron and fluorescence microscopy. In hyperosmoregulating, i.e., FW-acclimated, tilapia only those mitochondria-rich (MR) cells present on the filament epithelium of the gill were exposed to the external medium. After acclimation of fish to hypersaline water these cells become more numerous, hypertrophy extensively, and form apical crypts not only in the gill filament but also in the opercular epithelium. Regardless of salinity, MR cells were never found to be exposed to the external medium on the secondary lamellae. In addition, two types of pavement cells were identified having distinct morphologies, which were unaffected by salinity. The gill filaments and the inner operculum were generally found to be covered by pavement cells with microridges, whereas the secondary lamellae were covered exclusively by smooth pavement cells.  相似文献   

5.
Glycoproteins (GPs) were visualised histochemically in the secretory cells – the mucous goblet cells (the type A and the type B), the serous goblet cells, the club cells and the epithelial cells in the gill epithelium of Rita rita. The type A mucous goblet cells, the type B mucous goblet cells and the epithelial cells elaborate GPs with oxidizable vicinal diols and GPs with sialic acid residue without O-acyl substitution. In addition, GPs with O-sulphate esters are elaborated by the type A and GPs with O-acyl sugars by the type B mucous goblet cells. GPs are absent in the serous goblet cells and are with oxidizable vicinal diols in low moieties in the club cells. The analysis of the results elucidates interesting differences in the composition and concentration of GPs in the mucus elaborated by the epithelium of the gill arches and the gill rakers; and the gill filaments and the secondary lamellae indicating the potential importance of the glycoproteins at these locations. GPs elaborated on the surfaces of the gill arches and the gill rakers could be associated to assist in feeding activities and on the surfaces of the gill filaments and the secondary lamellae in the respiratory activity.  相似文献   

6.
Summary Scanning electron micrographs of gill tissue from rainbow trout fixed with 50% glutaraldehyde revealed the presence of microridges on surfaces of epithelial cells of the secondary lamellae. These microridges vary in length from 1 to 7 , with a mean height of 0.75 . Calculations show that they increase the total lamellar epithelial surface area approximately 2.5 fold. Mucus secreting cells are present on the body of the filament and on secondary lamellae. Chloride cells are located primarily in the interlamellae filamental epithelium and on the basal area of lamellae. Extensions of the chloride cell epithelium are microvillous in nature and their height is only slightly greater than that of the microridges of typical lamellar epithelial cells. A reduction in number or complete absence of microvilli on chloride cells appeared to be related to degenerative changes in these cells observed in transmission electron micrographs. Non secretory interlamellae filamental epithelial cells have microridges of very attenuated lengths.This research was supported by EPA Grant R-801034, USPHS Training Grant HL-05873, the Mich. Agr. Exp. Sta., Proj. 122 (Journal Article No. 5801), and OWRR Grant A-064. Acknowledgements: The authors wish to express their gratitude to Mrs. J. Mack and Mr. Wm. McAffe for their technical assistance with the electron microscopes.  相似文献   

7.
黄斑篮子鱼和金钱鱼鳃的扫描电镜观察   总被引:6,自引:0,他引:6  
对两种鲈形目鱼类黄斑篮子鱼(Siganus oramin)和金钱鱼(Scatophagus argus)的鳃结构进行扫描电镜观察。结果表明,黄斑篮子鱼和金钱鱼鳃的表面结构及微细结构与其他硬骨鱼类基本相似,鳃丝表面都具有规则或不规则分布的环形微嵴、沟、坑、孔等结构。黄斑篮子鱼的鳃片中部鳃丝表皮有大量凸起,而端部鳃丝表皮的凹凸程度明显较低,黄斑篮子鱼的鳃小片高度较金钱鱼鳃小片高。黄斑篮子鱼和金钱鱼鳃上皮的扁平上皮细胞、氯细胞和黏液细胞的形态结构及数量分布存在细微的差异。黄斑篮子鱼鳃片鳃丝的端部和中部表面有黏液细胞,金钱鱼鳃丝表面的黏液细胞很难观察到,与大多数淡水鱼类相似。黄斑篮子鱼鳃丝表面分布的氯细胞数量多于金钱鱼,这可能与两种鱼生活环境、生活习性的长期演变相关。  相似文献   

8.
The gills of the air-breathing estuarine goby,Pseudapocryptes lanceolatus, are reduced owing to the development of a specialized organ of O2 uptake from air. In the first gill arch, the filaments of the outer hemibranch are reduced to nearly one-half in comparison to those of its inner hemibranch. A smaller number of secondary lamellae per mm (27.6) occurring on one side of the gill filament reduces the gill surface area. A bilogarithmic plot of the gill area and the body weight indicates a curve with two significantly different components, one (b = 0.924) related to the fish weighing up to 6 g and the other (b = 0.405) to the fish weighing 8 g and above.  相似文献   

9.
The existence of a layer of mucus covering the gill lamellae of healthy rainbow trout (Oncorhynchus mykiss) was investigated. Using cryo-scanning electron microscopy, a smooth, undulating, thin layer was observed which completely covered gill filaments and lamellae, thereby obscuring epithelial microridges. After processing cryopreserved gill arches in glutaraldehyde for conventional scanning electron microscopy, the layer was no longer present and epithelial microridges were clearly visible. The identity of this layer was investigated using cryopreserved gills which were treated in one of two ways. First, gills were incubated with a rabbit antiserum to gill mucus, with normal rabbit serum, or with phosphate-buffered saline. Following fixation in glutaraldehyde and processing, only the gill tissue incubated with the mucus-specific antiserum was still covered with the smooth layer. The layer was also retained on the gills of fish anesthetized in a solution containing mucusspecific antiserum and then processes in glutaraldehyde for conventional scanning electron microscopy. The tenacious nature of the mucous layer was demonstrated by its stability following exposure to formalin and a cationic detergent. Second, the presence of this layer was confirmed on gill tissue which was cryopreserved, followed by freeze-substitution and vapor fixation, and then examined by transmission electron microscopy.  相似文献   

10.
Annual losses of ~5–10% of the juvenile stock of European seabass, Dicentrarchus labrax (L.) in the northern coast of the Adriatic Sea has been attributed to heavy infections of the gill monogenean Diplectanum aequans. Immunocytochemical, light and ultrastructural studies were carried out on seabass naturally parasitized with this monogenean. The site of the worm's attachment was marked by the common presence of haemorrhages and white mucoid exudate. In histological sections, infected gills showed hyperplasia, as well as proliferation of mucous cells and rodlet cells. Disruption and fusion of the secondary lamellae were common in all infected seabass, with several specimens also showing marked inflammation and erosion of the primary and secondary lamellar epithelium. Immunostaining of primary and secondary gill filaments with an antibody against the antimicrobial peptide piscidin 3 (anti-piscidin 3 antibody, anti-HAGR) revealed a subpopulation of mast cells that were positive. Mast cells were both within and outside the blood vessels of the primary and secondary lamellae, and often made intimate contact with vascular endothelial cells. Mast cells were irregular in shape with a cytoplasm filled by numerous electron-dense, membrane-bound granules. Our data provide evidence showing the presence of piscidin 3 in the cytoplasmic granules of an important group of fish inflammatory cells, the mast cells resident in seabass gill tissue. There was no significant difference in the number of HAGR-positive mast cells between infected and uninfected fish (ANOVA, p > 0.05). However, mast cells in parasitized gills usually showed much stronger immunostaining intensity compared to those in unparasitized gills. These data are the first to document a response of piscidins or any other antimicrobial peptide of fish to parasite infection and suggest that mast cells may play a role in certain inflammatory responses without a detectable increase in their numbers.  相似文献   

11.
The gills of ammocoetes of the Southern Hemisphere lamprey Geotria australis have been studied using light and electron microscopy. Emphasis has been placed on describing the structures and vessels involved in gaseous exchange, and on providing quantitative data for the water-blood barrier, including diffusion distance, diffusing capacity and the relative volumes of the component tissues. Although lamprey gills lie inside rather than outside the branchial skeleton as in gnathostomatous fishes. the morphology and ultrastructure of the gill filaments and secondary lamellae of G. australis larvae are very similar to those of teleost fishes. The extensive blood spaces within the secondary lamellae are enclosed by pillar cell bodies and pillar cell flanges which support two layers of epithelial cells. The outer surfaces of the epithelial cells are ridged and covered in a flocculent material which probably represents mucus. Differences were observed in the components of the water-blood barrier at the distal edges and at the surface of the secondary lamellae. At the distal edge, the lining of the marginal channel consisted of an endothelial cell rather than the pillar cell flanges which line the blood spaces of other regions. Based on light micrograph measurements, these differences result in a reduction in the arithmetic mean thickness of the water-blood barrier from 3.62 μm over the pillar cells to 2.22 μm over the marginal channel. Using values for the water-blood barrier obtained from light micrographs, the arithmetic and harmonic mean diffusing capacities were calculated as 1.1046 and 1.7589 ml O2min/mm Hg/Kg.  相似文献   

12.
Piau?us (Leporinus macrocephalus), were raised in 300 m2 ponds (density of 10 fish/m2) presenting asphyxia signals and daily mortality of 27 fishes. Specimens with 8-cm total body length, were collected for necropsy. Mucus of body surface and pieces of organs were collected and examined microscopically, in wet mounts, stained or in histological sections. The smears examination showed the presence of several spores in the secondary lamellae of the gill filaments, identified as Henneguya leporinicola n.sp (Myxozoa: Myxobolidae). Histopathological study showed epithelial hyperplasia and fulfilling of the spaces between the secondary lamellae, congestion and telangiectasia sinusoidal. It was also observed hyperplasia of the goblet cells and several cysts of parasite with 70.3 microns diameter. Such cysts were situated among the secondary lamellae, covered or not by the hyperplasic epithelium. With this diagnostic, three applications of formalin solution 10 ml/m3 were carried out. Fifteen days after that, fish were examined again to ascertain whether the treatment was efficient on disease caused by the protozoa. The tissue alterations present in the gills after the treatment were just a moderate sinusoidal congestion and a slight epithelial hyperplasia on the base of the secondary lamellae.  相似文献   

13.
Detailed measurements of gill area and constituent variables (total filament length, lamellar frequency and bilateral area) were performed on both hemibranchs of all eight arches in six specimens of gilthead sea bream Sparus aurata (mean ±s.e . 49·9 ± 0·2 g). Shrinkage was also quantified and results were corrected accordingly. Filament number decreased from the first to the fourth gill arch, and average bilateral area of secondary lamellae was higher in the second and third arches. Total and mean filament length, total number of secondary lamellae and total gill area (ATG) were lower in posterior than in anterior hemibranchs of the second, third and fourth gill arches; while the opposite was observed for the first arch. Lamellar frequency was increased in posterior hemibranchs of all arches compared to that in anterior hemibranchs, especially at the fourth arch. Comparison of the actually measured ATG and constituent variables with estimates revealed that the third gill arch is the most representative for appropriate measurements and that any of its components (even one hemibranch) approximates the best ATG (within the range of 0·2–4·3%, P > 0·05) and related dimensions. Consequently, necessary measurements were restricted to the posterior hemibranch of the third gill arch, and ATG and dimensions (y) were estimated in 21 specimens (23·5–217·6 g) and correlated to body mass (M) according to the allometric equation y = aMb. As fish increased in size, ATG (b= 0·664), total (b= 0·425) and mean (b= 0·323) filament length, total number of filaments (b= 0·103) and secondary lamellae (b= 0·377), as well as average lamellar bilateral area (b= 0·288), increased, while the opposite was observed for lamellar frequency (b=?0·049) and mass‐specific area (b=?0·336). Data obtained are discussed in relation to S. aurata activity and living ethology.  相似文献   

14.
This comparative study of the gill morphometrics in scombrids (tunas, bonitos, and mackerels) and billfishes (marlins, swordfish) examines features of gill design related to high rates of gas transfer and the high‐pressure branchial flow associated with fast, continuous swimming. Tunas have the largest relative gill surface areas of any fish group, and although the gill areas of non‐tuna scombrids and billfishes are smaller than those of tunas, they are also disproportionally larger than those of most other teleosts. The morphometric features contributing to the large gill surface areas of these high‐energy demand teleosts include: 1) a relative increase in the number and length of gill filaments that have, 2) a high lamellar frequency (i.e., the number of lamellae per length of filament), and 3) lamellae that are long and low in profile (height), which allows a greater number of filaments to be tightly packed into the branchial cavity. Augmentation of gill area through these morphometric changes represents a departure from the general mechanism of area enhancement utilized by most teleosts, which lengthen filaments and increase the size of the lamellae. The gill design of scombrids and billfishes reflects the combined requirements for ram ventilation and elevated energetic demands. The high lamellar frequencies and long lamellae increase branchial resistance to water flow which slows and streamlines the ram ventilatory stream. In general, scombrid and billfish gill surface areas correlate with metabolic requirements and this character may serve to predict the energetic demands of fish species for which direct measurement is not possible. The branching of the gill filaments documented for the swordfish in this study appears to increase its gill surface area above that of other billfishes and may allow it to penetrate oxygen‐poor waters at depth. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Fish gill morphology: inside out   总被引:13,自引:0,他引:13  
In this short review of fish gill morphology we cover some basic gross anatomy as well as in some more detail the microscopic anatomy of the branchial epithelia from representatives of the major extant groups of fishes (Agnathans, Elasmobranchs, and Teleosts). The agnathan hagfishes have primitive gill pouches, while the lampreys have arch-like gills similar to the higher fishes. In the lampreys and elasmobranchs, the gill filaments are supported by a complete interbranchial septum and water exits via external branchial slits or pores. In contrast, the teleost interbranchial septum is much reduced, leaving the ends of the filaments unattached, and the multiple gill openings are replaced by the single caudal opening of the operculum. The basic functional unit of the gill is the filament, which supports rows of plate-like lamellae. The lamellae are designed for gas exchange with a large surface area and a thin epithelium surrounding a well-vascularized core of pillar cell capillaries. The lamellae are positioned for the blood flow to be counter-current to the water flow over the gills. Despite marked differences in the gross anatomy of the gill among the various groups, the cellular constituents of the epithelium are remarkably similar. The lamellar gas-exchange surface is covered by squamous pavement cells, while large, mitochondria-rich, ionocytes and mucocytes are found in greatest frequency in the filament epithelium. Demands for ionoregulation can often upset this balance. There has been much study of the structure and function of the branchial mitochondria-rich cells. These cells are generally characterized by a high mitochondrial density and an amplification of the basolateral membrane through folding or the presence of an intracellular tubular system. Morphological subtypes of MRCs as well as some methods of MRC detection are discussed.  相似文献   

16.
合浦珠母贝鳃的显微与超微结构   总被引:1,自引:0,他引:1  
合浦珠母贝(Pinctada fucata)是典型的滤食性瓣鳃类动物,也是我国重要的海水珍珠养殖贝类。本研究用光学显微镜、扫描电镜和透射电镜观察了合浦珠母贝鳃的显微和超微结构。结果表明,合浦珠母贝鳃结构属于异丝鳃型,左右两侧各2个鳃瓣,每个鳃瓣由内鳃瓣和外鳃瓣组成。鳃瓣由主鳃丝和普通鳃丝构成,主鳃丝在鳃瓣中主要起支架作用,每2根主鳃丝之间的9~12根普通鳃丝由"簇内连接"(intrabunchial junction)相连成簇。普通鳃丝之间通过"丝间连接"(interfilament junction)相连,丝间连接的上皮细胞与普通鳃丝的扁平细胞结构一样,为鳃的呼吸上皮。丝间连接的存在扩大了鳃的表面积,这种结构有助于进行气体交换。主鳃丝和普通鳃丝表面有前纤毛和侧纤毛,与食物运送和气体交换有关。普通鳃丝表面的纤毛为典型的"9+2"型微管结构。  相似文献   

17.
The toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated in the seabream Sparus aurata specimens. Liver presented hepatocytic alterations, with an increase of lipid droplets and glycogen granules. Ultrastructural modifications of hepatocytes included RER fractionation, glycogen augmentation, as well as a rise in the number of lipid droplets, vacuoles and secondary lysosomes. In the gills, secondary lamellar epithelium showed hyperplasia, hypertrophy and lamellar fusion on the edge of the filaments. At the end of the exposure period (1 pg1(-1) TCDD for 20 days), some organelles in epithelial cells of the secondary lamellae and the tubular system of the chloride cells appeared altered. In the liver of TCDD-exposed specimens, immunoreactive cytochrome P-450 1A was concentrated close to the cytoplasmic and nuclear membranes, and positive granules were also evident throughout cytoplasm of the hepatocytes. Significant cytochrome P-450 staining was especially evident in endothelium of the hepatic vascular system. At the beginning of the exposure (1 pg 1(-1) TCDD, for 5 and 10 days), cytochrome P-450 immunostaining was observed in the cytoplasm of scarce hepatic cells and after 20 days of treatment, specific immunostained cytoplasmic granules were detected in most hepatocytes. In gills of TCDD-treated specimens, pillar-endothelial cells showed a cytochrome P-450 1A immunostaining concentrated close to the base of gill filaments and dispersed through the gill lamellae. There was also significant cytochrome staining of the endothelium of the branchial vascular system. However, no cytochrome immunoreactivity was observed in epithelial-respiratory cells.  相似文献   

18.
A scanning electron microscopical examination of the gills of H. fossilis is described. The surface architecture of gill filaments and secondary gill lamellae showed the presence of various features such as indentations, micropits and crevices. The possible functions of these morphological adaptations are discussed in relation to physiology of the gill.  相似文献   

19.
Immunocytochemical, light microscopy and ultrastructural studies were conducted on gill of sea bream, Sparus aurata L., naturally parasitized with the important parasitic copepod Ergasilus sp. to assess pathology and cellular responses. Thirty-seven S. aurata were examined from a fish farm; 26 (70%) were parasitized, with infection intensity ranging from 3 to 55 parasites per fish. Hosts were divided into two groups, lightly infected fish (<15 parasites per fish) and heavily infected fish (>15 parasites per fish). In histological sections, the copepod encircled gill lamellae with its second antennae, compressed the epithelium, provoked hyperplasia and hemorrhage, occluded arteries and often caused lamellar disruption. Fusion of the secondary lamellae due to epithelial hyperplasia was common in all infected fish; heavily infected fish showed more intense branchial inflammation. In both healthy and infected fish, mast cells (MCs) were free within the connective tissue inside and outside the blood vessels of the primary lamellae and made close contact with vascular endothelial cells, mucous cells and rodlet cells (RCs). MCs were irregular in shape with a cytoplasm filled by numerous electron-dense, membrane-bound granules. Immunostaining of primary and secondary gill filaments with an antibody against the antimicrobial peptide (AMP) piscidin 3 (anti-piscidin 3 antibody, anti-HAGR) revealed a subpopulation of MCs that were positive. These MCs were more abundant in gills of heavily infected fish than in either lightly infected or uninfected fish (ANOVA, P<0.05). Our report documents the response of gill to ectoparasite infection and provides further evidence that mast cells and their AMPs may play a role in responding to branchial ectoparasite infections.  相似文献   

20.
This study examines the functional gill morphology of the shortfin mako, Isurus oxyrinchus, to determine the extent to which its gill structure is convergent with that of tunas for specializations required to increase gas exchange and withstand the forceful branchial flow induced by ram ventilation. Mako gill structure is also compared to that of the blue shark, Prionace glauca, an epipelagic species with lower metabolic requirements and a reduced dependence on fast, continuous swimming to ventilate the gills. The gill surface area of the mako is about one‐half that of a comparably sized tuna, but more than twice that of the blue shark and other nonlamnid shark species. Mako gills are also distinguished from those of other sharks by shorter diffusion distances and a more fully developed diagonal blood‐flow pattern through the gill lamellae, which is similar to that found in tunas. Although the mako lacks the filament and lamellar fusions of tunas and other ram‐ventilating teleosts, its gill filaments are stiffened by the elasmobranch interbranchial septum, and the lamellae appear to be stabilized by one to two vascular sacs that protrude from the lamellar surface and abut sacs of adjacent lamellae. Vasoactive agents and changes in vascular pressure potentially influence sac size, consequently effecting lamellar rigidity and both the volume and speed of water through the interlamellar channels. However, vascular sacs also occur in the blue shark, and no other structural elements of the mako gill appear specialized for ram ventilation. Rather, the basic elasmobranch gill design and pattern of branchial circulation are both conserved. Despite specializations that increase mako gill area and efficacy relative to other sharks, the basic features of the elasmobranch gill design appear to have limited selection for a larger gill surface area, and this may ultimately constrain mako aerobic performance in comparison to tunas. J. Morphol. 271:937–948, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号