首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sex determination is a complicated process involving large-scale modifications in gene expression affecting virtually every tissue in the body. Although the evolutionary origin of sex remains controversial, there is little doubt that it has developed as a process of optimizing metabolic control, as well as developmental and reproductive functions within a given setting of limited resources and environmental pressure. Evidence from various model organisms supports the view that sex determination may occur as a result of direct environmental induction or genetic regulation. The first process has been well documented in reptiles and fish, while the second is the classic case for avian species and mammals. Both of the latter have developed a variety of sex-specific/sex-related genes, which ultimately form a complete chromosome pair (sex chromosomes/gonosomes). Interestingly, combinations of environmental and genetic mechanisms have been described among different classes of animals, thus rendering the possibility of a unidirectional continuous evolutionary process from the one type of mechanism to the other unlikely. On the other hand, common elements appear throughout the animal kingdom, with regard to a) conserved key genes and b) a central role of sex steroid control as a prerequisite for ultimately normal sex differentiation. Studies in invertebrates also indicate a role of epigenetic chromatin modification, particularly with regard to alternative splicing options. This review summarizes current evidence from research in this hot field and signifies the need for further study of both normal hormonal regulators of sexual phenotype and patterns of environmental disruption.  相似文献   

2.
A number of factors, including sexual selection, body weight, body-weight dimorphism, predation, diet, and phylogenetic inertia have been proposed as influences on the evolution of canine dimorphism in anthropoid primates. Although these factors are not mutually exclusive, opinions vary as to which is the most important. The role of sexual selection has been questioned because mating system, which should reflect its strength, poorly predicts variation in canine dimorphism, particularly among polygynous species. Kay et al. (1988) demonstrate that a more refined estimate of intermale competition explains a large proportion of the variation in canine dimorphism in platyrrhine primates. We expand their analysis, developing a more generalized measure of intermale competition based on the frequency and intensity of male-male agonism. We examine the relative influences of predation (inferred by substrate use), female body weight, body-weight dimorphism, diet, and sexual selection on the evolution of anthropoid canine dimorphism. Intermale competition is very strongly associated with canine dimorphism. Predation also has a marked effect on canine dimorphism, in that savanna-dwelling species consistently show greater canine dimorphism than other species, all other factors being held equal. Body-weight dimorphism is also strongly associated with canine dimorphism, though apparently through a common selective basis, rather than through allometric effects. Body weight seems to play only a minor, indirect role in the evolution of canine dimorphism. Diet plays no role. Likewise, we find little evidence that phylogenetic inertia is a constraint on the evolution of canine dimorphism.  相似文献   

3.
Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments.In the second part, we discuss types of quantitative relationships between hormones and behavioral traits within individuals, using testosterone as an example. We review conceptual models for testosterone-behavior relationships and discuss the relevance of these models for within-individual plasticity in behavior. Next, we discuss approaches for testing the nature of quantitative relationships between testosterone and behavior, concluding that again reaction norm approaches might be a fruitful way forward.We propose that an integration of new tools, especially of reaction norm approaches into the field of behavioral endocrinology will allow us to make significant progress in our understanding of the mechanisms, the functional implications and the evolution of hormone–behavior relationships that mediate variation both within and among individuals. This knowledge will be crucial in light of already ongoing habitat alterations due to global change, as it will allow us to evaluate the mechanisms as well as the capacity of wild populations to adjust hormonally-mediated behaviors to altered environmental conditions.  相似文献   

4.
Crustaceans, like all aquatic invertebrates, take up and accumulate metals from a wide range of sources and the trace metal concentrations within their tissues and bodies show great variability. Trace metal uptake in crustaceans occurs from the water and food, either of which may be affected by the physico-chemical properties of the sediment. Accumulated metal concentrations in amphipods are contrasted with those of other crustaceans and examples are given to show how external and internal factors affect bioaccumulation. One of the major pathways for the uptake of trace metals is from solution directly through permeable surfaces including the gills. Changes in salinity and oxygen tension can modify the uptake characteristics from solution particularly in the case of interstitial water within sediments. Infaunal amphipods have direct contact with the sediment and the bioavailabilities of trace metals depend on the strength of the metal binding which is determined by a combination of properties including grain size, organic content, the presence of metals such as lead and iron as well as other ambient environmental conditions. Metal concentrations within amphipod bodies reflect the bioavailabilities of trace metals in their habitat. Body size is one of the major factors contributing to individual variability in trace metal concentrations within species. For some amphipod species, there are differences in trace metal accumulation with gender, breeding and developmental stage. In amphipods, accumulated body metal concentrations are the best biomarkers for environmental metal availabilities. Metal accumulation affects the ecology of crustaceans as a consequence of the energy costs associated with excreting and/or detoxifying the incoming metals. If the costs are significant, then this may result in reduced growth and reproduction. The effects of accumulated metals on communities have yet to be determined. Accumulated metals in crustacean prey species may be transferred along the food chain, but biomagnification in fish appears unlikely. One of the main ecological challenges is the need to link molecular biomarkers with ecologically relevant life history characteristics including growth, survival, reproduction and recruitment.  相似文献   

5.
Explaining variation in the abundance of species remains a challenge in ecology. We sought to explain variation in abundance of Neotropical forest birds using a dataset of population densities of 596 species. We tested a priori hypotheses for the roles of species traits, environmental factors, and species interactions. Specifically, we focused on four factors: 1) body mass (trait), 2) habitat type (environmental factor), 3) net primary productivity (NPP; environmental factor) and 4) species richness of competitors (species interaction). Body size explained much variation in density, although only when analyzed at higher taxonomic levels. Habitat type was a strong predictor of density. The relationship between density and productivity was weak. Densities were related negatively to the species richness of heterospecifics. This trend was particularly strong within closely related groups. Our results show that the influence of energetic factors such as body size and productivity depends on phylogeny, and that they act through indirect relations with other variables; alternative ecological factors such as habitat structure and species interactions play a more direct and stronger role in determining abundance than previously thought.  相似文献   

6.
An adaptive explanation for environmental sex determination is that it promotes sexual size dimorphism when larger size benefits one sex more than the other. That is, if growth rates are determined by environment during development, then it is beneficial to match developmental environment to the sex that benefits more from larger size. However, larger size may also be a consequence of larger size at hatching or growing for a longer time, i.e., delayed age at first reproduction. Therefore, the adaptive significance of sexual size dimorphism and environmental sex determination can only be interpreted within the context of both growth and maturation. In addition, in those animals that continue to grow after maturation, sexual size dimorphism at age of first reproduction could differ from sexual size dimorphism at later ages as growth competes for energy with reproduction and maintenance. I compared growth using annuli on carapace scales in two species of box turtles (Terrapene carolina and T. ornata) that have similar patterns of environmental sex determination but, reportedly, have different patterns of sexual size dimorphism. In the populations I studied, sexual size dimorphism was in the same direction in both species; adult females were, on average, larger than adult males. This was due in part to males maturing earlier and therefore at smaller sizes than females. In spite of similar patterns of environmental sex determination, patterns of growth differed between the species. In T. carolina, males grew faster than females as juveniles but females had the larger asymptotic size. In T. ornata, males and females grew at similar rates and had similar asymptotic sizes. Sexual size dimorphism was greatest at maturation because, although males matured younger and smaller, they grew more as adults. There was, therefore, no consistent pattern of faster growth for females that may be ascribed to developmental temperature. Received: 20 March 1996 / Accepted: 10 March 1998  相似文献   

7.
We studied the relative importance of local habitat conditions and landscape structure for species richness of vascular plants, bryophytes and lichens in dry grasslands on the Baltic island of Öland (Sweden). In addition, we tested whether relationships between species richness and vegetation cover indicate that competition within and between the studied taxonomic groups is important. We recorded species numbers of vascular plants, bryophytes and lichens in 4 m2 plots (n=452), distributed over dry grassland patches differing in size and degree of isolation. Structural and environmental data were collected for each plot. We tested effects of local environmental conditions, landscape structure and vegetation cover on species richness using generalized linear mixed models. Different environmental variables explained species richness of vascular plants, bryophytes and lichens. Environmental effects, particularly soil pH, were more important than landscape structure. Interaction effects of soil pH with other environmental variables were significant in vascular plants. Plot heterogeneity enhanced species richness. Size and degree of isolation of dry grassland patches significantly affected bryophyte and lichen species richness, but not that of vascular plants. We observed negative relationships between bryophyte and lichen species richness and the cover of vascular plants. To conclude, effects of single environmental variables on species richness depend both on the taxonomic group and on the combination of environmental factors on a whole. Dispersal limitation in bryophytes and lichens confined to dry grasslands may be more common than is often assumed. Our study further suggests that competition between vascular plants and cryptogams is rather asymmetric.  相似文献   

8.
Endocrine modulation by natural and synthetic chemicals and the eventually resulting beneficial or adverse effects for human and animal health are controversially debated not only among scientists but particularly in the public. Most information is available on so-called environmental estrogens, however the amount of information on substances interfering with other hormonal axes steadily increases, particularly on those exhibiting (anti)androgenic activities. The aim of this paper is to summarize existing data and to give an overview on the potential pathways leading to interferences of environmental hormones with homeostasis and eventually resulting health effects. Experimental evidence suggests the hypothesis that fetal and neonatal organisms may be at risk if exposed to environmental estrogens. In contrary, it appears as if phytoestrogens, particularly those with selective estrogen receptor modulator- (SERM-)like activities have the potential to be useful in medical application, both as dietary means and as pharmaceuticals. Lacking valid information about the detailed analysis of the molecular mode of action for environmental estrogens, the possibility for an ultimate classification of environmental estrogens in "dangerous endocrine disruptors" and phytoestrogens in "useful pharmaceuticals" cannot be supported conclusively. Nevertheless both activities are likely.  相似文献   

9.
Species distributional limits may coincide with hard dispersal barriers or physiological thresholds along environmental gradients, but they may also be influenced by species interactions. We explore a number of models of interspecific interactions that lead to (sometimes abrupt) distribution limits in the presence and absence of environmental gradients. We find that gradients in competitive ability can lead to spatial segregation of competitors into distinct ranges, but that spatial movement tends to broaden the region of sympatry between the two species, and that Allee effects tend to sharpen these boundaries. We generalize these simple models to include metapopulation dynamics and other types of interactions including predator–prey and host–parasite interactions. We derive conditions for range limits in each case. We also consider models that include coevolution and gene flow and find that character displacement along environmental gradients can lead to stable parapatric distributions. We conclude that it is essential to consider coevolved species interactions as a potential mechanism limiting species distributions, particularly when barriers to dispersal are weak and environmental gradients are gradual.  相似文献   

10.
Information on predator and prey distributions is integral to our understanding of migratory connectivity, food web dynamics and ecosystem structure. In marine systems, although large animals that return to land can be fitted with tracking devices, minimum instrument sizes preclude deployments on small seabirds that may nevertheless be highly abundant and hence major consumers. An increasingly popular approach is to use N and C stable isotope analysis of feathers sampled at colonies to provide information on distribution and trophic level for the preceding, and generally little-known, nonbreeding period. Despite the burgeoning of this research, there have been few attempts to verify such relationships. In this study, we demonstrate a clear correspondence between isotope ratios of feathers and nonbreeding distributions of seven species from South Georgia tracked using loggers. This generated a rudimentary isoscape that was used to infer the habitat preferences of eight other species ranging in size from storm petrels to albatrosses, and which could be applied, with caveats, in other studies. Differences in inferred distribution within and between species had major implications for relative exposure to anthropogenic threats, including climate change and fisheries. Although there were no differences in isotope values between sexes in any of the smaller petrels, mean stable C (δ13C), but not stable N isotope ratios (δ15N), tended to be greater in females than males of the larger, and more sexually size-dimorphic species. This indicates a difference in C source (distribution), rather than trophic level, and a correspondence between the degree of sexual size dimorphism in Procellariiformes and the level of between-sex niche segregation.  相似文献   

11.
Reproductive interference arises when individuals of one species engage in reproductive activities with individuals of another, leading to fitness costs in one or both species. Reproductive interference (RI) therefore has two components. First, there must be mis-directed mating interactions. Second, there must be costs associated with these mis-directed interactions. Here we consider RI between four species of true bug in the family Lygaeidae, focusing in particular on the fitness consequences to Lygaeus equestris. The species we consider vary in their relationships with each other, including species in the same or different genus, and with or without natural overlap in their geographic ranges. First we show that inter-specific mating interactions, although not a certain outcome, are common enough to perhaps influence mating behaviour in these species (arising in up to 10 % of inter-specific pairings). Second, we show that reproductive interference can seriously reduce female fitness in L. equestris. Importantly, different species impose different costs of RI on L. equestris, with interactions with male Spilostethus pandurus inflicting fitness costs of similar magnitude to the costs of mating with con-specifics. On the other hand, mating interactions with male Oncopeltus fasciatus appear to have no effect on female fitness. In a follow-up experiment, when we allowed competition amongst just females of S. pandurus and L. equestris, the fitness of the latter was not reduced, arguing more strongly for the role of reproductive interference. However, in our final experiments under mass mating conditions with extended ecological interactions (including scope for competition for resources and cannibalism), the costs of RI were less apparent. Our data therefore suggest that the costs of RI will be context-specific and may act in concert with, or be swamped by, other ecological effects. We suggest that comparative studies of this sort that both mimic naturally occurring reproductive interference events, and also artificially generate new ones, will be necessary if we are to better understand the ecological and evolutionary significance of reproductive interference.  相似文献   

12.
The interaction between women's hormonal condition and subjective, physiological, and behavioral indices of desire or arousal remains only partially explored, in spite of frequent reports from women about problems with a lack of sexual desire. The present study recruited premenopausal women at two sites, one in the United States and the other in the Netherlands, and incorporated various measures of acute changes in sexual desire and arousal. A sample of 46 women who met criteria for Hypoactive Sexual Desire Disorder (HSDD) was compared to 47 women who experienced no sexual problems (SF). Half of each group used oral contraceptives (OCs). The specific goal was to investigate whether there is a relationship between women's hormone levels and their genital and subjective sexual responsiveness. Background demographics and health variables, including oral contraceptive (OC) use, were recorded and hormones (total testosterone (T), free testosterone (FT), SHBG, and estradiol) were analyzed along with vaginal pulse amplitude and self-report measures of desire and arousal in response to sexual fantasy, visual sexual stimuli, and photos of men's faces. Self-reported arousal and desire were lower in the HSDD than the SF group, but only for women who were not using oral contraceptives. Relationships between hormones and sexual function differed depending on whether a woman was HSDD or not. In line with prior literature, FT was positively associated with physiological and subjective sexual arousal in the SF group. The HSDD women demonstrated the opposite pattern, in that FT was negatively associated with subjective sexual responsiveness. The findings suggest a possible alternative relationship between hormones and sexual responsiveness in women with HSDD who have characteristics similar to those in the present study.  相似文献   

13.
An international effort is underway to establish a representative system of marine protected areas (MPAs) in the Southern Ocean to help provide for the long-term conservation of marine biodiversity in the region. Important to this undertaking is knowledge of the distribution of benthic assemblages. Here, our aim is to identify the areas where benthic marine assemblages are likely to differ from each other in the Southern Ocean including near-shore Antarctica. We achieve this by using a hierarchical spatial classification of ecoregions, bathomes and environmental types. Ecoregions are defined according to available data on biogeographic patterns and environmental drivers on dispersal. Bathomes are identified according to depth strata defined by species distributions. Environmental types are uniquely classified according to the geomorphic features found within the bathomes in each ecoregion. We identified 23 ecoregions and nine bathomes. From a set of 28 types of geomorphic features of the seabed, 562 unique environmental types were classified for the Southern Ocean. We applied the environmental types as surrogates of different assemblages of biodiversity to assess the representativeness of existing MPAs. We found that 12 ecoregions are not represented in MPAs and that no ecoregion has their full range of environmental types represented in MPAs. Current MPA planning processes, if implemented, will substantially increase the representation of environmental types particularly within 8 ecoregions. To meet internationally agreed conservation goals, additional MPAs will be needed. To assist with this process, we identified 107 spatially restricted environmental types, which should be considered for inclusion in future MPAs. Detailed supplementary data including a spatial dataset are provided.  相似文献   

14.
Genomic resources and microarrays for the common carp Cyprinus carpio L.   总被引:1,自引:0,他引:1  
The common carp is an important fish species satisfying ornamental, food and recreational fisheries' needs worldwide, but in common with other cyprinid fishes, it is particularly renowned for its environmental tolerance. Investigating the mechanistic basis of growth, disease and environmental tolerance is greatly enhanced by access to a comprehensive list of gene sequences and post-genomic technologies. The current status of genomic resources is described for this species including 40 k cDNA clone collections, their associated expressed sequence tags (ESTs) and a developing series of 13 k–26 k cDNA microarrays fabricated from amplicons. The arrays have been directed at questions of response to environmental stress (cold and hypoxia), viral and bacterial disease and ectoparasite infection. Consequently, clones from a wide range of tissues were prepared. The authors discuss how these resources were generated and their application. Evidence is presented supporting that the carp microarray may also be useful as a heterologous set of probes in studies of other fish species.  相似文献   

15.
Metamorphosis in Zophobas atratus is dependent on isolation: when kept in grouped conditions, larvae undergo numerous supernumerary moults, growing in size, without pupating. This beetle thus represents an interesting model for the analysis of possible differences in the endocrine regulation of normal vs. supernumerary larval moults. In this study, the ecdysteroid titres have been analysed in this species, using enzyme immunoassay. The hormonal variations of larvae undergoing normal or supernumerary larval cycles were particularly examined, in either grouped or isolated conditions. Normal larval cycles presented very similar ecdysteroid variations in grouped as well as isolated conditions, showing a single hormonal peak (at about 1000pg/&mgr;l). Supplementary larval cycles, occurring in grouped conditions, also showed a similar single ecdysteroid peak, but after a longer period of basal levels. Isolation of such larvae triggered their larval-pupal transformation, which was characterized by more complex hormonal fluctuations, including a small ecdysteroid peak before the main one. Interestingly, the isolation of big larvae during a large part of their cycle induced this peculiar hormonal pattern synchronously, confirming the involvement of a complex neuroendocrine control between external conditions and ecdysteroid titres.  相似文献   

16.
The midsagittal area and other morphological measures were taken on the corpus callosum of four different species of primate: Macaca mulatta, M. fascicularis, Callithrix jacchus, and Saguinus oedipus. The first two species are strongly dimorphic, whereas the New World forms show little dimorphism with regard to overall body size, canines, and brain weight. Neither total corpus callosal area (TOTALCC), or other parts of the corpus callosum (CC) showed any significant sexual dimorphism in any of the primate species sampled. Only in M. mulatta did a sexual dimorphism appear to be significant. In males of this species, the dorsoventral width of the splenium was larger than in females. In addition, the anterior commissure (ANTCOMM) evinced no sexual dimorphism in the different species. Brain weight was significantly dimorphic in only M. mulatta, and when ratio data were used to correct for brain weight, no significant differences were found in the corpus callosum. This is in contrast to Homo sapiens, where the relative size of the CC has been reported to be larger in females, and particularly so in the posterior, or splenial portion of the CC. Correlation coefficients were calculated for the various variables within each species. In general, most of the callosal measures are significantly inter-correlated, although the exact pattern varies for each species. Thus, unlike Homo sapiens, or pongids such as Gorilla and Pan, neither New nor Old World monkeys show any striking evidence for sexual dimorphism in the corpus callosum.  相似文献   

17.
Abstract. Correspondence Analysis of species by environmental variables matrices is a relatively simple method for handling matrices which include many species and variables. If columns represent species and rows represent the states in which the environmental variables have been divided, each element of the matrix shows the number of releves in which the simultaneous occurrence of that species and that environmental variable state have been recorded. In this paper the use of the method for presence-absence data is considered. The method is appropriate for studies whose main purpose is to look for broad correlations between groups of environmental variables and groups of species. It is particularly useful for handling heterogeneous data sets including rare species and species-poor releves, a situation in which Correspondence Analysis and Canonical Correspondence Analysis are frequently complicated by the production of axes explaining the relationship between rare species and species-poor releves. Examples are presented with artificial data as well as with real data collected in the Mexican portion of the Chihuahuan Desert (Bolsón de Mapimi). It is shown for the Mapimi data that the method is robust to the partition of variables into different numbers of states.  相似文献   

18.
Mammals of Australian islands: factors influencing species richness   总被引:1,自引:0,他引:1  
Distribution patterns of indigenous non-volant terrestrial mammals on 257 Australian islands were examined in relation to environmental parameters and the effects of human-induced disturbance during prehistoric and historic times on island species numbers. Species occurrence for individual species, for taxonomic and trophic groups, and for all species together was related to environmental parameters using regression analysis and the extreme-value function model. Patterns of occurrence were examined separately within three major biogeographic regions derived by pattern analysis. The number of species known to have occurred on these islands during historic times was adequately predicted from area alone. No statistically significant improvement in predicted species number was gained by including island elevation, mean annual rainfall, isolation from the mainland or the number of potentially competing species present on the island. Similarly, no single factor other than area was found to influence consistently the presence of individual species. We conclude that the occurrence of indigenous non-volant terrestrial mammal species on these islands indicates a relictual rather than equilibrial fauna. Visitation by Aboriginal people during prehistoric times did not significantly increase mammal extinctions on islands. Examination of patterns of species richness for a given area on a regional basis showed that islands in and around Bass Strait and Tasmania (Bass Region) were the most species-rich, islands off the northern coasts were slightly less rich, and islands off the south western coasts had fewest species. This is in contrast to the usual latitudinal gradient in species richness patterns. However, islands off the northern and eastern coasts had an overall greater number of different species. When considered in relation to the number of different species of mammals occurring within each region, islands of a given size in Bass Region typically bore a higher proportion of this species pool than other regions. The Bass Region was found to be particularly rich in macropoid herbivores and dasyurid carnivores and insectivores. Analyses indicated that there is a very strong relationship between the presence of exotics as a whole and the local extinction of native mammals. Many mammal species formerly widespread on the Australian mainland are now restricted totally to islands (nine species) or are threatened with extinction on the mainland and have island populations of conservation significance (ten species). In all, thirty-five islands protect eighteen taxa of Australian threatened mammals. The land-use and management of these islands is of considerable importance to nature conservation. The introduction of exotic mammals to these islands should be prevented; any introductions that occur should be eradicated immediately.  相似文献   

19.
Several of the conifer species are increasingly adopted as Christmas trees worldwide. These species have become integral parts of the horticultural economies of North American and European countries. Postharvest characteristics such as needle abscission/retention, color, fragrance and rehydration abilities vary with species and these complex physiological traits are strongly modulated by hormonal and environmental factors. A large body of research indicates that prevalence of low temperature before harvest evokes cold acclimation responses that involve an increase in complex sugar concentrations, alterations in membrane structures and enhancements in scavenging abilities promoting postharvest needle retention. Adverse postharvest environmental factors, for example, high temperature and vapor pressure deficit are found to increase water stress, cause dehydration and accelerate needle abscission and/or discoloration. Postharvest water stress/cellular dehydration is one of the fundamental biophysical signals that triggers a cascade of hormonal changes, leading to needle abscission. Abscissic acid levels increase during cold acclimation as well as prior to abscission indicating a complicated and paradoxical role in abscission. Ethylene levels increase before abscission and are well proven to instigate the needle fall. Concentrations of cytokinins, auxins and polyamines decline postharvest. However, their interactive roles with other phytohormones orchestrating the abscission process still remain elusive. This review presents and discusses our current knowledge of the physiological aspects of pre-and postharvest environmental factors on needle abscission.  相似文献   

20.
A wide variety of maternal, social and sexual bonding strategies have been described across mammalian species, including humans. Many of the neural and hormonal mechanisms that underpin the formation and maintenance of these bonds demonstrate a considerable degree of evolutionary conservation across a representative range of these species. However, there is also a considerable degree of diversity in both the way these mechanisms are activated and in the behavioural responses that result. In the majority of small-brained mammals (including rodents), the formation of a maternal or partner preference bond requires individual recognition by olfactory cues, activation of neural mechanisms concerned with social reward by these cues and gender-specific hormonal priming for behavioural output. With the evolutionary increase of neocortex seen in monkeys and apes, there has been a corresponding increase in the complexity of social relationships and bonding strategies together with a significant redundancy in hormonal priming for motivated behaviour. Olfactory recognition and olfactory inputs to areas of the brain concerned with social reward are downregulated and recognition is based on integration of multimodal sensory cues requiring an expanded neocortex, particularly the association cortex. This emancipation from olfactory and hormonal determinants of bonding has been succeeded by the increased importance of social learning that is necessitated by living in a complex social world and, especially in humans, a world that is dominated by cultural inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号