首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
球形芽孢杆菌能够合成具杀蚊活性的蛋白晶体,该晶体在蚊中肠碱性条件下降解产生毒性,尽管球形芽孢杆菌蛋白酶与杀蚊毒素的降解无关,但它在球形芽孢杆菌杀蚊制剂的产生中有重要意义。同时球形芽孢杆菌产生的碱性蛋白酶具有潜在的医疗价值。 我们以本实验室分离的高效杀蚊菌C_3—41菌株为材料,研究了球形芽孢杆菌蛋白酶的产生特性及其理化性质,在国内尚属首次报道。  相似文献   

2.
A new extracellular protease having a prospective application in the food industry was isolated from Bacillus sUbtilis NCIM 2711 by (NH4)2SO4 precipitation from the cell broth. It was purified using DEAE-Cellulose and CM-Sephadex C-50 ion-exchange chromatography. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 7.0 and temperature 55 degrees C with Km 1.06 mg/ml. The enzyme was stable over a pH range 6.5-8.0 at 30 degrees C for 1 hr in presence of CaCl2 x 2H2O. At 55 degrees C, the enzyme retained 60% activity up to 15 min in presence of CaCl2 x 2H2O. EDTA and o-phenanthroline (OP) completely inhibited the enzyme activity while DFP, PMSF and iodoacetamide were ineffective. The enzyme was completely inhibited by Hg2+ and partially by Cd2+, Cu2+, Ni2+, Pb2+ and Fe2+. The OP inhibited enzyme could be reactivated by Zn2+ and Co2+ up to 75% and 69% respectively. It is a neutral metalloprotease showing a single band of 43 kDa on SDS-PAGE.  相似文献   

3.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatographies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25,000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0. Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37 degrees C for 60 min. The optimum pH was pH 11.5-13.0 at 37 degrees C and the optimum temperature was 70 degrees C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80 degrees C and stability from pH 4-12.5 at 60 degrees C and below 75 degrees C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of microbial serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

4.
Extracellular caseinolytic activity was found in the culture fluid of Streptococcus sanguis ATCC 10556 grown in a dialyzed culture medium. This activity was due to multiple proteases that differed in their elution from hydroxyapatite, sensitivity to enzyme inhibitors, specificity and optimum pH. IgA protease, which splits human immunoglobulin A1 into intact Fc and Fab could be effectively separated from these relatively non-specific proteases and purified to apparent homogeneity in 20% yield by a five-step procedure. Although the bulk of the dextran sucrase activity was separated from the IgA protease, a small amount of sucrase activity remained with the final IgA protease preparation. In polyacrylamide gel electrophoresis at pH 9.5 both activities were located in the single protein band detected in this preparation. A quantitative method for the assay of IgA protease was developed, based on radial immunodiffusion to quantitate the Fab produced. This was used to follow the specific activity and yield during purification, and to characterize some of the catalytic properties of the enzyme. At an enzyme/substrate ratio of 1: 400 (w/w) the protease could effect 50% proteolysis of IgA in overnight incubation at 37 degrees C. The optimum activity was at pH 8.0, and 50% inhibition was achieved at 4 . 10(-4) M o-phenanthroline or 8 . 10(-4) M ethylene diamine tetraacetate. Concentrations of diisopropyl phosphofluoridate, phenylmethyl-sulfonyl fluoride, iodoacetate and p-chloromercuribenzoate up to 10(-2) M were without effect on the IgA protease activity. Full reactivation of the chelator inhibited enzyme could be achieved by the addition of Mg2+, Mn2+ or Ca2+.  相似文献   

5.
A novel haloalkaliphilic, thermostable serine protease was purified from the extreme halophilic archaeon, Halogeometricum borinquense strain TSS101. The protease was isolated from a stationary phase culture, purified 116-fold with 18% yield and characterized biochemically. The molecular mass of the purified enzyme was estimated to be 86 kDa. The enzyme showed the highest activity at 60 degrees C and pH 10.0 in 20% NaCl. The enzyme had high activity over the pH range from 6.0 to 10.0. Enzymatic activity was strongly inhibited by 1 mM phenyl methylsulfonyl fluoride, but activity was increased 59% by 0.1% cetyltrimethylammonium bromide. The enzyme exhibited relatively high thermal stability, retaining 80% of its activity after 1 h at 90 degrees C. Thermostability increased in the presence of Ca2+. The stability of the enzyme was maintained in 10% sucrose and in the absence of NaCl.  相似文献   

6.
Thermostable protease is very effective to improve the industrial processes in many fields. Two thermostable extracellular proteases from the culture supernatant of the thermophilic fungus Chaetomium thermophilum were purified to homogeneity by fractional ammonium sulfate precipitation, ion-exchange chromatography on DEAE-Sepharose, and PhenylSepharose hydrophobic interaction chromatography. By SDS-PAGE, the molecular mass of the two purified enzymes was estimated to be 33 kDa and 63 kDa, respectively. The two proteases were found to be inhibited by PMSF, but not by iodoacetamide and EDTA. The 33 kDa protease (PRO33) exhibited maximal activity at pH 10.0 and the 63 kDa protease (PRO63) at pH 5.0. The optimum temperature for the two proteases was 65 degrees C. The PRO33 had a K(m) value of 6.6 mM and a V(max) value of 10.31 micromol/l/min, and PRO63 17.6 mM and 9.08 micromol/l/min, with casein as substrate. They were thermostable at 60 degrees C. The protease activity of PRO33 and PRO63 remained at 67.2% and 17.31%, respectively, after incubation at 70 degrees C for 1 h. The thermal stability of the two enzymes was significantly enhanced by Ca2+. The residual activity of PRO33 and PRO63 at 70 degrees C after 60 min was approximately 88.59% and 39.2%, respectively, when kept in the buffer containing Ca2+. These properties make them applicable for many biotechnological purposes.  相似文献   

7.
An alkalophilic Bacillus sp., strain GX6638 (ATCC 53278), was isolated from soil and shown to produce a minimum of three alkaline proteases. The proteases were purified by ion-exchange chromatography and were distinguishable by their isoelectric point, molecular weight, and electrophoretic mobility. Two of the proteases, AS and HS, which exhibited the greatest alkaline and thermal stability, were characterized further. Protease HS had an apparent molecular weight of 36,000 and an isoelectric point of approximately 4.2, whereas protease AS had a molecular weight of 27,500 and an isoelectric point of 5.2. Both enzymes had optimal proteolytic activities over a broad pH range (pH 8 to 12) and exhibited temperature optima of 65 degrees C. Proteases HS and AS were further distinguished by their proteolytic activities, esterolytic activities, sensitivity to inhibitors, and their alkaline and thermal stability properties. Protease AS was extremely alkali stable, retaining 88% of initial activity at pH 12 over a 24-h incubation period at 25 degrees C; protease HS exhibited similar alkaline stability properties to pH 11. In addition, protease HS had exceptional thermal stability properties. At pH 9.5 (0.1 M CAPS buffer, 5 mM EDTA), the enzyme had a half-life of more than 200 min at 50 degrees C and 25 min at 60 degrees C. At pH above 9.5, protease HS readily lost enzymatic activity even in the presence of exogenously supplied Ca2+. In contrast, protease AS was more stable at pH above 9.5, and Ca2+ addition extended the half-life of the enzyme 10-fold at 60 degrees C. In contrast, protease AS was more stable at pH above 9.5, and Ca2+ addition extended the half-life of the enzyme 10-fold at 60 degrees C. The data presented here clearly indicate that these two alkaline proteases from Bacillus sp. strain GX6638 represent novel proteases that differ fundamentally from the proteases previously described for members of the genus Bacillus.  相似文献   

8.
Trypsin PC from the hepatopancreas of the king crab Paralithodes camtschatica was isolated and purified to apparent homogeneity by ion-exchange chromatography on Aminosilochrom and DEAE-Sephadex and affinity chromatography on arginine-agarose. The yield of the enzyme was 37.7%, and the purification degree was 21. Trypsin PC has a molecular mass of 29 kDa and pI < 2.5. It hydrolysis N-benzoyl-L-arginine p-nitroanilide at the optimum pH of 7.5-8.0 and at the temperature optimum of 55 degrees C (K(m) = 0.05 mM). Trypsin PC retained its activity within the pH range of 5.8-9.0 in the presence of Ca2+. The enzyme was inhibited by the specific inhibitors of serine proteases diisopropyl fluorophoshate and phenylmethylsulfonyl fluoride, by the trypsin inhibitor N-tosyl-L-lysylchloromethylketone, and by the trypsin inhibitors from soybean and potato. Trypsin PC was found to hydrolyze amide bonds formed by carboxylic groups of lysine and arginine in peptide substrates. The N-terminal sequence of this enzyme is IVGGTEVTPG.  相似文献   

9.
Extracellular Corynebacterium lipase was produced using a 2.5 L Chemap fermentor using 1300 ml fermentation medium at temperature 33 degrees C, agitator speed 50 rpm, aeration rate 1 VVM having KLa 16.21 hr(-1). Crude lipase was purified by salting out method followed by dialysis and immobilized using calcium alginate gel matrix followed by glutaraldehyde cross linking Purification process increased specific activity of enzyme from 2.76 to 114.7 IU/mg. Activity of immobilized enzyme was 107.31 IU/mg. Optimum temperature for purified and immobilized enzyme activity were 65 degrees and 50 degrees C respectively. Optimum pH was 8.0 in both the cases, Km and Vmax value for purified lipase were 111.1 micromol/min and 14.7% respectively. Ca2+ (5 mM) was found to be stimulator for enzyme activity. Immobilized lipase retained 68.18% of the original activity when stored for 40 days.  相似文献   

10.
A microorganism hydrolyzing carboxymethyl cellulose was isolated from a paddy field and identified as Bacillus sp. Production of cellulase by this bacterium was found to be optimal at pH 6.5, 37 degrees C and 150 rpm of shaking. This cellulase was purified to homogeneity by the combination of ammonium sulphate precipitation, DEAE cellulose, and sephadex G-75 gel filtration chromatography. The cellulase was purified up to 14.5 fold and had a specific activity of 246 U/mg protein. The enzyme was a monomeric cellulase with a relative molecular mass of 58 kDa, as determined by SDS-PAGE. The enzyme exhibited its optimal activity at 50 degrees C and pH 6.0. The enzyme was stable in the pH range of 5.0 to 7.0 and its stability was maintained for 30 min at 50 degrees C and its activity got inhibited by Hg2+, Cu2+, Zn2+, Mg2+, Na2+, and Ca2+.  相似文献   

11.
The coagulant protein from the venom of Russell's viper was purified by means of successive chromatography on Sephadex G-50, DEAE-cellulose and Sephadex G-200. The purified coagulant protein was homogeneous by polyacrylamide gel electrophoresis and ultracentrifugation. The molecular weight was estimated to be about 100 000 by ultracentrifuge analysis and 130 000 by gel filtration. The coagulant protein contains 11.1% carbohydrate which includes 5.1% hexose (galactose: mannose = 1:1), 5% hexosamine (glucosamine), and 1% neuraminic acid (N-acetylneuraminic acid and N-glycolyneuraminic acid). The isoelectric point is pH 6.3. The results of both sodium dodecyl sulfate electrophoresis and gel filtration in 6 M guanidium chloride suggest that it consists of four polypeptide chains. The coagulant protein functions as an enzyme in activating blood coagulation factor X in the presence of Ca2+. N-a-p-Toluenesulfonyl-L-arginine methyl ester hydrolyzing activity in the preparation definitely decreased during purification and it suggests that the clotting activity is not associated with the esterase activity. The clotting activity is inhibited by diisopropyl phosphorofluoridate and by phenylmethylsulfonyl fluoride, suggesting that the coagulant protein is a serine protease. The optimum pH is between pH 7.0 and pH 8.0. At neutral pH the coagulant protein is stable below 50 degrees C, but is rapidly inactivated above 55 degrees C.  相似文献   

12.
A novel extracellular serine protease designated Pernisine was purified to homogeneity and characterized from the archaeon Aeropyrum pernix K1. The molecular mass, estimated by SDS-PAGE analysis and by gel filtration chromatography, was about 34 kDa suggesting that the enzyme is monomeric. Pernisine was active in a broad range of pH (5.0-12.0) and temperature (60-120 degrees C) with maximal activity at 90 degrees C and between pH 8.0 and 9.0. In the presence of 1 mM CaCl(2) the activity, as a function of the temperature, reached a maximum at 90 degrees C but at 120 degrees C the enzyme retained almost 80% of its maximal activity. Activity inhibition studies suggest that the enzyme is a serine metalloprotease and biochemical data indicate that Pernisine is a subtilisin-like enzyme. The protease gene, identified from the sequenced genome of A. pernix, was amplified from total genomic DNA by PCR technique to construct the expression plasmid pGEX-Pernisine. The Pernisine, lacking the leader sequence, was expressed in Escherichia coli BL21 strain as a fusion protein with glutathione- S-transferase. The biochemical properties of the recombinant enzyme were found to be similar to those of the native enzyme.  相似文献   

13.
The hemA gene encoding 5-aminolevulinic acid synthase (ALAS) was cloned from the genomic DNA of photosynthetic bacterium Rhodopseudomonas palustris KUGB306. The deduced protein (ALAS) of this gene contained 409 amino acids. The hemA gene was subcloned into an expression vector pGEX-KG and the encoded protein was overexpressed as a fusion protein with glutathione-S-transferase (GST) in Escherichia coli BL21. The recombinant ALAS was purified and isolated free of the fusion partner (GST) by affinity purification on glutathione-Sepharose 4B resin and cleavage of the purified fusion protein by thrombin protease. The optimum pH and temperature of the recombinant ALAS was found to be at pH 7.5-8.0 and 35-40 degrees C, respectively. The Km value of the enzyme was 2.01 mM for glycine and 49.55 microM for succinyl-CoA. The enzyme activity was strongly inhibited by Pb2+, Fe2+, Co2+, Cu2+, and Zn2+ at 1 mM, but slightly affected by Mg2+ and K+. The recombinant ALAS required pyridoxal 5'-phosphate (PLP) as a cofactor for catalysis. Removal of this cofactor led to complete loss of the activity. Ultraviolet-visible spectroscopy with the ALAS suggested the presence of an aldimine linkage between the enzyme and PLP.  相似文献   

14.
A gene encoding a beta-1,3-1,4-glucanase (CelA) belonging to family 5 of glycoside hydrolases was cloned and sequenced from the Bacillus subtilis A8-8. The open-reading-frame of celA comprised 1499 base pairs and the enzyme was composed of 500 amino acids with a molecular mass of 55 kDa. The recombinant beta-1,3-1,4 glucanase was purified by GST-fusion purification system. The pH and temperature optima of the enzyme were 8.0 and 60 degrees C, respectively. The enzyme was stable within pH 6.0-9.0. It was stable up to 60 degrees C and retained 30% of its original activity at 70 degrees C for 60 min. It hydrolyzed lichenan, CMC, xylan, laminarin, avicel and pNPC, but was inactive towards cellobiose. The enzyme activity was markedly activated by Co2+ and Mn2+, but was strongly inactivated by Fe3+. The truncated gene, devoid of cellulose-binding domain (CBD) showed 60% of activity and bound to avicel.  相似文献   

15.
Detergent-resistant phospholipase A, which is tightly bound to the outer membranes of Escherichia coli K-12 cells, was purified approximately 2000-fold to near homogeneity by solubilization with sodium dodecylsulfate and butan-1-ol, acid precipitation, acetone fractionation and column chromatographies on Sephadex G-100 in the presence of sodium dodecylsulfate and on DEAE-cellulose in the presence of Triton X-100. The final preparation showed a single band in the sodium dodecylsulfate gel system. The enzyme hydrolyzes both the 1-acyl and 2-acyl chains of phosphatidylethanolamine or phosphatidylcholine. It also attacks 1-acyl and 2-acylglycerylphosphorylethanolamine. Thus, this enzyme shows not only phospholipase A1 and lysophospholipase L1 activities but also phospholipase A2 and lysophospholipase L2 activities. The enzyme lost its activity completely on incubation at 80 degrees C for 5 min at either pH 6.4 or pH 8.0. It was stable in 0.5% sodium dodecylsulfate at below 40 degrees C. The enzyme was inactivated on incubation for 5 min at 90 degrees C in 1% sodium dodecylsulfate/1% 2-mercaptoethanol/4 M urea. The native and inactivated enzymes showed different protein bands with RF values corresponding to Mr 21 000 and Mr 28 000 respectively, in a sodium dodecylsulfate gel system. Triton X-100 seemed to protect the enzyme from inactivation. The purified enzyme was fully active on phosphatidylethanolamine in the presence of 0.0002% or 0.05% Triton X-100. The enzyme requires Ca2+. From its properties this enzyme seems to be identical with the enzyme purified from crude extracts of Escherichia coli B by Scandella and Kornberg. However, it differs from the latter in its positional specificity and susceptibility to sodium dodecylsulfate. Possible explanation of the difference of positional specificity of the two preparations is also described.  相似文献   

16.
The heat-stable extracellular protease of Pseudomonas sp. (isolate MC60) was investigated. Heat resistance of the enzyme in milk at sterilization temperature was dependent on the presence of Ca2+. The half-life of the enzyme at ultrahigh temperature (149 C) in skim milk or milk-salts buffer with Ca2+ was approximately 7.0 s. Treatment of milk with chelators completely removed the heatstabilizing effect of milk. The enzyme was partially purified by ammonium sulfate precipitation and column chromatography on Sephadex G-100. At 21 C the enzyme retained greater than 85% activity after exposure to pH values between 5 and 10. Enzyme activity was reduced by metal chelating agents. Both Ca2+ and Zn2+ were required for optimal enzyme activity. Molecular weight was estimated at 48,000 by gel filtration.  相似文献   

17.
The heat-stable extracellular protease of Pseudomonas sp. (isolate MC60) was investigated. Heat resistance of the enzyme in milk at sterilization temperature was dependent on the presence of Ca2+. The half-life of the enzyme at ultrahigh temperature (149 C) in skim milk or milk-salts buffer with Ca2+ was approximately 7.0 s. Treatment of milk with chelators completely removed the heatstabilizing effect of milk. The enzyme was partially purified by ammonium sulfate precipitation and column chromatography on Sephadex G-100. At 21 C the enzyme retained greater than 85% activity after exposure to pH values between 5 and 10. Enzyme activity was reduced by metal chelating agents. Both Ca2+ and Zn2+ were required for optimal enzyme activity. Molecular weight was estimated at 48,000 by gel filtration.  相似文献   

18.
Bacillus cereus MCM B-326, isolated from buffalo hide, produced an extracellular protease. Maximum protease production occurred (126.87+/-1.32 U ml(-1)) in starch soybean meal medium of pH 9.0, at 30 degrees C, under shake culture condition, with 2.8 x 10(8) cells ml(-1) as initial inoculum density, at 36 h. Ammonium sulphate precipitate of the enzyme was stable over a temperature range of 25-65 degrees C and pH 6-12, with maximum activity at 55 degrees C and pH 9.0. The enzyme required Ca(2+) ions for its production but not for activity and/or stability. The partially purified enzyme exhibited multiple proteases of molecular weight 45 kDa and 36 kDa. The enzyme could be effectively used to remove hair from buffalo hide indicating its potential in leather processing industry.  相似文献   

19.
Cobalt ion inhibits the Ca2+ + Mg2(+)-ATPase activity of sealed sarcoplasmic reticulum vesicles, of solubilized membranes and of the purified enzyme. To use Co2+ appropriately as a spectroscopic ruler to map functional sites of the Ca2+ + Mg2(+)-ATPase, we have carried out studies to obtain the kinetic parameters needed to define the experimental conditions to conduct the fluorimetric studies. 1. The apparent K0.5 values of inhibition of this ATPase are 1.4 mM, 4.8 mM and 9.5 mM total Co2+ at pH 8.0, 7.0 and 6.0, respectively. The inhibition by Co2+ is likely to be due to free Co2+ binding to the enzyme. Millimolar Ca2+ can fully reverse this inhibition, and also reverses the quenching of the fluorescence of fluorescein-labeled sarcoplasmic reticulum membranes due to Co2+ binding to the Ca2+ + Mg2(+)-ATPase. Therefore, we conclude that Co2+ interacts with Ca2+ binding sites. 2. Co2+.ATP can be used as a substrate by this enzyme with Vmax of 2.4 +/- 0.2 mumol ATP hydrolyzed min-1 (mg protein)-1 at 20-22 degrees C and pH 8.0, and with a K0.5 of 0.4-0.5 mM. 3. Co2+ partially quenches, about 10 +/- 2%, the fluorescence of fluorescein-labeled sarcoplasmic reticulum Ca2+ + Mg2(+)-ATPase upon binding to this enzyme at pH 8.0. From the fluorescence data we have estimated an average distance between Co2+ and fluorescein in the ATPase of 1.1-1.8 nm or 1.3-2.1 nm for one or two equidistant Co2+ binding sites, respectively. 4. Co2+.ATP quenches about 20-25% of the fluorescence of fluorescein-labeled Ca2+ + Mg2(+)-ATPase, from which we obtain a distance of 1.1-1.9 nm between Co2+ and fluorescein located at neighbouring catalytic sites.  相似文献   

20.
Mannitol 2-dehydrogenase (MDH) catalyzes the pyridine nucleotide dependent reduction of fructose to mannitol. Lactobacillus intermedius (NRRL B-3693), a heterofermentative lactic acid bacterium (LAB), was found to be an excellent producer of mannitol. The MDH from this bacterium was purified from the cell extract to homogeneity by DEAE Bio-Gel column chromatography, gel filtration on Bio-Gel A-0.5m gel, octyl-Sepharose hydrophobic interaction chromatography, and Bio-Gel Hydroxyapatite HTP column chromatography. The purified enzyme (specific activity, 331 U/mg protein) was a heterotetrameric protein with a native molecular weight (MW) of about 170 000 and subunit MWs of 43 000 and 34 500. The isoelectric point of the enzyme was at pH 4.7. Both subunits had the same N-terminal amino acid sequence. The optimum temperature for the reductive action of the purified MDH was at 35 degrees C with 44% activity at 50 degrees C and only 15% activity at 60 degrees C. The enzyme was optimally active at pH 5.5 with 50% activity at pH 6.5 and only 35% activity at pH 5.0 for reduction of fructose. The optimum pH for the oxidation of mannitol to fructose was 7.0. The purified enzyme was quite stable at pH 4.5-8.0 and temperature up to 35 degrees C. The K(m) and V(max) values of the enzyme for the reduction of fructose to mannitol were 20 mM and 396 micromol/min/mg protein, respectively. It did not have any reductive activity on glucose, xylose, and arabinose. The activity of the enzyme on fructose was 4.27 times greater with NADPH than NADH as cofactor. This is the first highly NADPH-dependent MDH (EC 1.1.1.138) from a LAB. Comparative properties of the enzyme with other microbial MDHs are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号