首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of this study was to quantify carbon (C) distribution for boreal black spruce (Picea mariana (Mill.) BSP) stands comprising a fire chronosequence in northern Manitoba, Canada. The experimental design included seven well‐drained (dry) and seven poorly‐drained (wet) stands that burned between 1998 and 1850. Vegetation C pools (above‐ground + below‐ground) steadily increased from 1.3 to 83.3 t C ha?1 for the dry chronosequence, and from 0.6 to 37.4 t C ha?1 for the wet chronosequence. The detritus C pools (woody debris + forest floor) varied from 10.3 to 96.0 t C ha?1 and from 12.6 to 77.4 t C ha?1 for the dry and wet chronosequence, respectively. Overstorey biomass, mean annual biomass increment (MAI), woody debris mass, and litterfall were significantly greater (α = 0.05) for the dry stands than for the wet stands, but the bryophyte, understorey, and forest floor C pools were significantly less for the dry than for the wet stands. The root mass ratio decreased with stand age until 37 years after fire, was fairly constant thereafter, and was not significantly affected by soil drainage. The C pools of the overstorey and bryophyte tended to increase with stand age. Foliage biomass, litterfall, and MAI (for the dry stands) peaked at 71 years after fire and declined in the oldest stands. The results from this study illustrate that the effects of disturbance and edaphic conditions must be accounted for in boreal forest C inventories and C models. The appropriateness of using chronosequences to examine effects of wildfire on ecosystem C distribution is discussed.  相似文献   

3.
Abstract. Sirén (1955) studied understorey species composition, tree stand properties and humus‐layer thickness in 64 unlogged forest stands on topographically and pedologically comparable sites. The stands were of even age (6 – 300 yr), stocked with the first or second tree generation after wildfire. The view of Sirén and several authors after him, that the vegetation of old‐growth boreal Picea forests is homogeneous on a broad scale, was examined by applying, in parallel, the partial variants of two ordination methods (DCA and PCA) to Sirén's vegetation data. Two main vegetation gradients were found: a major gradient running from recently burnt plots with prominence of pioneer species to plots with stand age > 100 yr, a well stocked tree layer and a thick humus layer, dominance of feather‐mosses and ample occurrence of shade‐tolerant as well as light‐preferring vascular plant species, and a second gradient along which first‐ and second‐generation plots segregate. The more prominent element of Betula trees in first‐ than in second‐generation stands < 100 yr contributed to the latter. A minor third gradient related to humus‐layer thickness was recovered by partial DCA only. The main vegetation gradient reappeared in separate ordinations of data from 47 mature forest stands (> 100 yr), but without being correlated with forest age. Variation among mature‐forest stands in the importance of pioneer species is considered mainly to be brought about by fine‐scale disturbance processes such as tree uprooting. Increasing importance of factors operating on within‐stand scales [development of a varied gap structure and stronger gradients in tree influence (radiation at ground level), soil moisture, soil depth and nutrient availability] with time is also reflected in the second and third mature‐forest ordination axes. Possible implications of the results for conservation of biological diversity and monitoring of changes in boreal forests are discussed.  相似文献   

4.
Forest ecosystems play dominant roles in global carbon budget because of the large quantities stored in live biomass, detritus, and soil organic matter. Researchers in various countries have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the relationship between stand age in different components (vegetation, forest floor detritus, and mineral soil) and C storage and sequestration remains poorly understood. In this paper, we assessed an age sequence of 18-, 20-, 25-, 38-, and 42-year-old Pinus tabulaeformis planted by analyzing the vertical distribution of different components biomass with similar site conditions on Mt. Taiyue, Shanxi, China. The results showed that biomass of P. tabulaeformis planted stands was ranged from 88.59 Mg ha?1 for the 25-year-old stand to 231.05 Mg ha?1 for the 42-year-old stand and the major biomass was in the stems. Biomass of the ground vegetation varied from 0.51 to 1.35 Mg C ha?1 between the five stands. The forest floor biomass increased with increasing stand age. The mean C concentration of total tree was 49.94%, which was higher than C concentrations of ground vegetation and forest floor. Different organs of trees C concentration were between 54.14% and 47.74%. C concentrations stored in the mineral soil for each stand experienced decline with increasing soil depth, but were age-independent. Total C storage of five planted forests ranged from 122.15 to 229.85 Mg C ha?1, of which 51.44–68.38% of C storage was in the soil and 28.46–45.21% in vegetation. The study provided not only with an estimation biomass of P. tabulaeformis planted forest in Mt. Taiyue, Shanxi, China, but also with accurately estimating forest C storage at ecosystem scale.  相似文献   

5.
Predicting forest composition change through time is a key challenge in forest management. While multiple successional pathways are theorized for boreal forests, empirical evidence is lacking, largely because succession has been inferred from chronosequence and dendrochronological methods. We tested the hypotheses that stands of compositionally similar overstory may follow multiple successional pathways depending on time since last stand‐replacing fire (TSF), edaphic conditions, and presence of intermediate disturbances. We used repeated measurements from combining sequential aerial photography and ground surveys for 361 boreal stands in central Canada. Stands were measured in 8–15 yr intervals over a ~ 60 yr period, covering a wide range of initial stand conditions. Multinomial logistic regression was used to analyze stand type transitions. With increasing TSF, stands dominated by shade‐intolerant Pinus banksiana, Populus sp., and Betula papyrifera demonstrated multiple pathways to stands dominated by shade‐tolerant Picea sp., Abies balsamea, and Thuja occidentalis. Their pathways seemed largely explained by neighborhood effects. Succession of stands dominated by shade‐tolerant species, with an exception of stands dominated by Picea sp., was not related to TSF, but rather dependent on edaphic conditions and presence of intermediate disturbances. Varying edaphic conditions caused divergent pathways with resource limited sites being dominated by nutrient‐poor tolerant species, and richer sites permitting invasion of early successional species and promoting species mixtures during succession. Intermediate disturbances promoted deciduous persistence and species diversity in A. balsamea and mixed‐conifer stands, but no evidence was detected to support “disturbance accelerated succession”. Our results demonstrate that in the prolonged absence of stand‐replacing disturbance boreal forest stands undergo multiple succession pathways. These pathways are regulated by neighborhood effects, resource availability, and presence of intermediate disturbance, but the relative importance of these regulators depends on initial stand type. The observed divergence of successional pathways supports the resource‐ratio hypothesis of plant succession.  相似文献   

6.
Abstract: The objective of this study was to analyse how stand age and precipitation influence abundance and diversity of epiphytic macrolichens in southern beech Nothofagus forests, estimated by lichen litter sampling. Five sites of Nothofagus dombeyi (Mirbel) Oersted were selected in Nahuel Huapi National Park, Argentina. At each site, lichen fragments from the forest floor were collected at 12.5 m2 plots in pairs of young and mature N. dombeyi forest. Additionally, two sites with multi‐aged subalpine Nothofagus pumilio (Poepp. et Endl.) Krasser forest were investigated in a similar manner. Average litterfall biomass per stand varied from less than 1 kg ha?1 in a young low‐precipitation stand to a maximum of 20 kg ha?1 in a mature high‐precipitation stand. In places with higher precipitation, litterfall biomass in N. dombeyi forest was considerably higher in old stands as compared with young ones. In places with less than 2000 mm of precipitation, differences in biomass were less pronounced. Old humid stands contained about twice as many taxa in the litter as old low‐precipitation stands and young stands in general. Mature stands in low‐precipitation sites only contained 17% of the litter biomass as compared with mature stands in high‐precipitation sites. Epiphytic lichen composition changed from predominating fruticose lichens (Usnea spp. and Protousnea spp.) in low‐precipitation stands to Pseudocyphellaria spp., Nephroma spp. and other foliose lichens, in the high‐precipitation stands. There were no clear differences in the proportion of fruticose and foliose lichens between young and old stands. Fruticose lichens dominated litter biomass in both N. pumilio sites.  相似文献   

7.
Abstract. 14 old, unlogged, Picea-dominated stands in the moist cool Sub-Boreal Spruce biogeoclimatic subzone of central British Columbia, Canada, were sampled to describe canopy heterogeneity, regeneration patterns and tree population age structures. These stands are composed of Picea engelmannii × glauca hybrids, Abies lasiocarpa and lesser amounts of Pinus contorta and Populus tremuloides, and had survived 124–343 yr since the last stand-destroying wildfire. Canopy cover was patchy and highly variable (ranging from 30.5 % to 86.4 %) but was not significantly related to stand age. Vertical canopy structure was less variable, reflecting the shade-tolerance and live crown ratios (length of live canopy expressed relative to tree height) of component species: 18.8 % for Populus, 20.2 % for Pinus, 46.7 % for Picea and 51.4 % for Abies. Individual stands varied considerably in their population structures and in their stand development trajectories, yet some patterns are evident. Survivors of the initial post-disturbance cohort of trees took 51 to 118 yr (mean = 80, s.d. = 20) to establish. Some stands had all tree species present during stand initiation, while other stands indicated early successional roles for Populus and Pinus, or a late successional role for Abies. Abies recruitment, while often slow in the beginning, occurs uniformly throughout the history of most stands, reflecting the high shade-tolerance of this species. Picea is often recruited in high densities early in stand development, and then (after long periods of exclusion) may be displaced by Abies in some stands but maintains itself in others. Minor, single-tree disturbances (due to bark beetles, root rot, and windthrow) were important in accelerating the reinitiation of Picea in the understory. Results thus suggest that stands from this region can be self-perpetuating in the absence of fire. Yet, post-fire tree populations still clearly dominate these spruce-fir forests, for only the oldest stand had greater basal area in the replacement cohort than in the initial cohort.  相似文献   

8.
A number of studies have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the altitudinal changes in C storage in different components (vegetation, detritus, and soil) of forest ecosystems remain poorly understood. In this study, we measured C stocks of vegetation, detritus, and soil of 22 forest plots along an altitudinal gradient of 700–2,000 m to quantify altitudinal changes in carbon storage of major forest ecosystems (Pinus koraiensis and broadleaf mixed forest, 700–1,100 m; Picea and Abies forest, 1,100–1,800 m; and Betula ermanii forest, 1,800–2,000 m) on Mt Changbai, Northeast China. Total ecosystem C density (carbon stock per hectare) averaged 237 t C ha−1 (ranging from 112 to 338 t C ha−1) across all the forest stands, of which 153 t C ha−1 (52–245 t C ha−1) was stored in vegetation biomass, 14 t C ha−1 (2.2–48 t C ha−1) in forest detritus (including standing dead trees, fallen trees, and floor material), and 70 t C ha−1 (35–113 t C ha−1) in soil organic matter (1-m depth). Among all the forest types, the lowest vegetation and total C density but the highest soil organic carbon (SOC) density occurred in Betula ermanii forest, whereas the highest detritus C density was observed in Picea and Abies forest. The C density of the three ecosystem components showed distinct altitudinal patterns: with increasing altitude, vegetation C density decreased significantly, detritus C density first increased and then decreased, and SOC density exhibited increasing but insignificant trends. The allocation of total ecosystem C to each component exhibited similar but more significant trends along the altitudinal gradient. Our results suggest that carbon storage and partitioning among different components in temperate forests on Mt Changbai vary greatly with forest type and altitude.  相似文献   

9.
Fine root systems may respond to soil chemical conditions, but contrasting results have been obtained from field studies in non-manipulated forests with distinct soil chemical properties. We investigated biomass, necromass, live/dead ratios, morphology and nutrient concentrations of fine roots (<2 mm) in four mature Norway spruce (Picea abies [L.] Karst.) stands of south-east Germany, encompassing variations in soil chemical properties and climate. All stands were established on acidic soils (pH (CaCl2) range 2.8–3.8 in the humus layer), two of the four stands had molar ratios in soil solution below 1 and one of the four stands had received a liming treatment 22 years before the study. Soil cores down to 40 cm mineral soil depth were taken in autumn and separated into four fractions: humus layer, 0–10 cm, 10–20 cm and 20–40 cm. We found no indications of negative effects of N availability on fine root properties despite large variations in inorganic N seepage fluxes (4–34 kg N ha−1 yr−1), suggesting that the variation in N deposition between 17 and 26 kg N ha−1 yr−1 does not affect the fine root system of Norway spruce. Fine root biomass was largest in the humus layer and increased with the amount of organic matter stored in the humus layer, indicating that the vertical pattern of fine roots is largely affected by the thickness of this horizon. Only two stands showed significant differences in fine root biomass of the mineral soil which can be explained by differences in soil chemical conditions. The stand with the lowest total biomass had the lowest Ca/Al ratio of 0.1 in seepage, however, Al, Ca, Mg and K concentrations of fine roots were not different among the stands. The Ca/Al ratio in seepage might be a less reliable stress parameter because another stand also had Ca/Al ratios in seepage far below the critical value of 1.0 without any signs of fine root damages. Large differences in the live/dead ratio were positively correlated with the Mn concentration of live fine roots from the mineral soil. This relationship was attributed to faster decay of dead fine roots because Mn is known as an essential element of lignin degrading enzymes. It is questionable if the live/dead ratio can be used as a vitality parameter of fine roots since both longevity of fine roots and decay of root litter may affect this parameter. Morphological properties were different in the humus layer of one stand that was limed in 1983, indicating that a single lime dose of 3–4 Mg ha−1 has a long-lasting effect on fine root architecture of Norway spruce. Almost no differences were found in morphological properties in the mineral soil among the stands, but vertical patterns were apparently different. Two stands with high base saturation in the subsoil showed a vertical decrease in specific root length and specific root tip density whereas the other two stands showed an opposite pattern or no effect. Our results suggest that proliferation of fine roots increased with decreasing base saturation in the subsoil of Norway spruce stands.  相似文献   

10.
We compared four types of 30‐year‐old forest stands growing on spoil of opencast oil shale mines in Estonia. The stand types were: (1) natural stands formed by spontaneous succession, and plantations of (2) Pinus sylvestris (Scots pine), (3) Betula pendula (silver birch), and (4) Alnus glutinosa (European black alder). In all stands we measured properties of the tree layer (species richness, stand density, and volume of growing stock), understory (density and species richness of shrubs and tree saplings), and ground vegetation (aboveground biomass, species richness, and species diversity). The tree layer was most diverse though sparse in the natural stands. Understory species richness per 100‐m2 plot was highest in the natural stand, but total stand richness was equal in the natural and alder stands, which were higher than the birch and pine stands. The understory sapling density was lower than 50 saplings/100 m2 in the plantations, while it varied between 50 and 180 saplings/100 m2 in the natural stands. Growing stock volume was the least in natural stands and greatest in birch stands. The aboveground biomass of ground vegetation was highest in alder stands and lowest in the pine stands. We can conclude that spontaneous succession promotes establishment of diverse vegetation. In plantations the establishment of diverse ground vegetation depends on planted tree species.  相似文献   

11.
Question: How can we model above‐ground litterfall in Mediterranean conifer forests using remotely sensed and ground data, and geographic information systems (GIS)? Location: Eastern Mediterranean conifer forest of Turkey. Methods: Above‐ground litterfall from Mediterranean forest stands of Pinus nigra, Cedrus libani, Pinus brutia and Juniperus excelsa and mixed Abies cilicica, C. libani and P. nigra was modeled as a function of fractional tree cover using a regression tree algorithm, based on IKONOS and Landsat TM/ETM+data. Landsat TM/ETM+images for the study area were used to map actual stand patterns, based on a land‐cover map of species stands using a supervised classification. Results: Total amount of annual above‐ground litterfall for the entire study area (12 260 km2) was estimated at 417.2 Mg ha?1 for P. brutia, 291.1 Mg ha?1 for the mixed stand, 115.5 Mg ha?1 for P. nigra, 54.6 Mg ha?1 for J. excelsa and 45.9 Mg ha?1 for C. libani. The maps generated indicate the distribution of the seasonal amount of total above‐ground litterfall for different species and the distribution of species stands in the study area. There was an increase in the amount of above‐ground litterfall for P. brutia stand in summer, for J. excelsa in autumn and for C. libani, P. nigra and the mixed stand of A. cilicica, P. nigra and C. libani in winter. Conclusion: Application of this model helps to improve the accuracy of estimated litterfall input to soil organic carbon pools in the Mediterranean conifer forests.  相似文献   

12.
Changes in the carbon stocks of stem biomass, organic layers and the upper 50 cm of the mineral soil during succession and afforestation of spruce (Picea abies) on former grassland were examined along six chronosequences in Thuringia and the Alps. Three chronosequences were established on calcareous and three on acidic bedrocks. Stand elevation and mean annual precipitation of the chronosequences were different. Maximum stand age was 93 years on acid and 112 years on calcareous bedrocks. Stem biomass increased with stand age and reached values of 250–400 t C ha?1 in the oldest successional stands. On acidic bedrocks, the organic layers accumulated linearly during forest succession at a rate of 0.34 t C ha?1 yr?1. On calcareous bedrocks, a maximum carbon stock in the humus layers was reached at an age of 60 years. Total carbon stocks in stem biomass, organic layers and the mineral soil increased during forest development from 75 t C ha?1 in the meadows to 350 t C ha?1 in the oldest successional forest stands (2.75 t C ha?1 yr?1). Carbon sequestration occurred in stem biomass and in the organic layers (0.34 t C ha?1 yr?1on acid bedrock), while mineral soil carbon stocks declined. Mineral soil carbon stocks were larger in areas with higher precipitation. During forest succession, mineral soil carbon stocks of the upper 50 cm decreased until they reached approximately 80% of the meadow level and increased slightly thereafter. Carbon dynamics in soil layers were examined by a process model. Results showed that sustained input of meadow fine roots is the factor, which most likely reduces carbon losses in the upper 10 cm. Carbon losses in 10–20 cm depth were lower on acidic than on calcareous bedrocks. In this depth, continuous dissolved organic carbon inputs and low soil respiration rates could promote carbon sequestration following initial carbon loss. At least 80 years are necessary to regain former stock levels in the mineral soil. Despite the comparatively larger amount of carbon stored in the regrowing vegetation, afforestation projects under the Kyoto protocol should also aim at the preservation or increase of carbon in the mineral soil regarding its greater stability of compared with stocks in biomass and humus layers. If grassland afforestation is planned, suitable management options and a sufficient rotation length should be chosen to achieve these objectives. Maintenance of grass cover reduces the initial loss.  相似文献   

13.
Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0–100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha–1 for the young stand to 344.8 Mg·ha–1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha–1 in the middle-aged stand to 3.5 Mg·ha–1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha–1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha–1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.  相似文献   

14.
In the Sokolov coal mining district of the Czech Republic, spoil heaps are reclaimed by forest plantations, which are planted directly into the rough substrate (alkaline tertiary clay). We compared the understory that spontaneously developed in seven types of forest stands: one type was unreclaimed stands (spontaneously overgrown by Betula pendula and Salix caprea) and six were plantations, each dominated by one tree genus (Alnus, Larix, Picea, Pinus, Quercus, and Tilia). The age of the stands ranged from 22 to 33 years. The cover of understory plant species in each stand was estimated, and 16 other environmental and community variables were quantified. The number of plant species was highest in Quercus, Larix, and unreclaimed stands, and was negatively correlated with forest canopy cover and with the cover of the understory dominant, the grass Calamagrostis epigejos. Understory composition differed considerably among the types of forest stands and was significantly explained by the measured environmental variables. Forward selection in redundancy analysis indicated that the most important variable driving understory composition was thickness of the fermentation layer, which is clearly connected with soil development. Environmental variables, including fermentation layer, were also affected by the type of forest stand. Therefore, all of the explained variability in understory composition could be attributed to the type of forest stand, which apparently affected the understory by its impact on soil formation. However, the most favorable soil conditions were not favorable for understory development, as they supported mainly C. epigejos, which suppressed other species. Our study also showed that even in the absence of reclamation measures, mining sites can be successfully restored due to spontaneous succession.  相似文献   

15.
An accepted criterion for measuring the success of ecosystem restoration is the return of biodiversity relative to intact reference ecosystems. The emerging global carbon economy has made landscape‐scale restoration of severely degraded Portulacaria afra (spekboom)‐dominated subtropical thicket, by planting multiple rows of spekboom truncheons, a viable land‐use option. Although large amounts of carbon are sequestered when planting a monoculture of spekboom, it is unknown whether this is associated with the return of other thicket biodiversity components. We used available carbon stock data from degraded, restored, and intact stands at one site, and sampled carbon stocks at restored stands at another site in the same plant community. We also sampled plant community composition at both sites. The total carbon stock of the oldest (50 years) post‐restoration stand (250.8 ± 14 t C ha?1) approximated that of intact stands (245 t C ha?1) and we observed a general increase in carbon content with restoration age (71.4 ± 24 t C ha?1 after 35 and 167.9 ± 20 t C ha?1 after 50 years). A multiple correspondence analysis separated degraded stands from stands under restoration based on ground cover, floristic composition, and total carbon stock. Older post‐restoration and intact stands were clustered according to woody canopy recruit abundance. Our results suggest that spekboom is an ecosystem engineer that promotes spontaneous return of canopy species and other components of thicket biodiversity. The spekboom canopy creates a cooler micro‐climate and a dense litter layer, both likely to favor the recruitment of other canopy species.  相似文献   

16.
The carbon (C) and nitrogen (N) storage capabilities of Pinus densiflora in six different stand ages (10, 27, 30, 32, 44, and 71 years old) were investigated in Korea. Thirty sample trees were destructively harvested and 12 were excavated. Samples from the above and belowground tree components, coarse woody debris (CWD), forest floor, and mineral soil (0–30 cm) were collected. Tree biomass was highest in the 71-year-old stand (202.8 t ha−1) and lowest in the 10-year-old stand (18.4 t ha−1). C and N storage in the mineral soil was higher in the 71-year-old stand than in the other stands, mainly due to higher soil C and N concentrations. Consequently, the total ecosystem C and N storage (tree+forest floor+CWD+soil) was positively correlated with stand age: increasing from a minimum in the 10 year old stand (18.8 t C ha−1 and 1.3 t N ha−1) to a maximum in the 71-year-old stand (201.4 t C ha−1 and 8.5 t N ha−1). The total ecosystem C storage showed a similar sigmoidal pattern to that of tree C storage as a function of the age-sequence, while N storage in the CWD, forest floor and mineral soil showed no significant temporal trends. Our results provide important insights that will increase our understanding of C and N storage in P. densiflora stands and our ability to predict changes according to stand age in the region.  相似文献   

17.
N mineralisation was investigated in the mor humus layer of a podzol at a forested catchment area of Saarejärve Lake in Eastern Estonia. The investigated areas were pine (Rhodococcumunderstorey) and spruce (Vaccinium understorey) stands, which are permanent sample plots of an integrated monitoring network. The seasonal pattern of net N mineralisation was studied by incubating undisturbed cores of mor humus (0–8 cm) in buried polyethylene bags in situ. Samples were collected and incubated between July 1996 and April 1998. The period of incubation was approximately 1 month, except for wintertime when incubation lasted till thawing of ground (5 months). The amounts of mineral nitrogen formed during monthly incubations in vegetation period vary considerably (0.4–8.7 kg ha–1). About 70% of the variation of net ammonification could be explained by environmental factors - temperature, initial moisture and pH. Ammonium was the dominant form of mineral nitrogen, which is typical for mor humus. The rate of nitrification was very low, and most of the annual net nitrification occurred during just one or two months (May–June, October) depending on site and year. Measured annual net N mineralisation was 29.2 kg ha–1 for the spruce stand and 23.6 kg ha–1 for the pine stand. These measures were found to be in good accordance with other N-fluxes in the ecosystem.  相似文献   

18.
Biomass and production of two stands with Quercus variabilis Bl. as the dominant species (stands 1 and 3) and one with Q. mongolica Fisch. as the dominant species (stand 2) were investigated in southern Korea. Stands 1 and 3 naturally occurred on sites with southerly aspects while stand 2 naturally occurred on northerly aspects; stand ages were similar for the three stands (36–38 years old). Total above- and belowground biomass including understory vegetation (Mg ha–1) was 108.4 for stand 1, 115.6 for stand 2, and 132.0 for stand 3, respectively. Understory vegetation constituted 17.4% of the total biomass in stand 1 but only 3.7–4.5% in stand 2 and stand 3. Roots constituted 20.1–24.6% of the biomass of the overstory vegetation. Although stand 3 showed the highest total biomass, net production was highest in stand 2 at 12.6 (Mg ha–1 year–1); net production levels for stands 1 and 3 were 11.7 and 11.1 (Mg ha–1 year–1), respectively. It appeared that the differences in site conditions related to aspect influenced the distribution of naturally regenerated oak species within a relatively small area and resulted in differences in biomass and production among the stands.  相似文献   

19.
We examined aboveground biomass dynamics, aboveground net primary production (ANPP), and woody detritus input in an old Sequoia sempervirens stand over a three-decade period. Our estimates of aboveground biomass ranged from 3300 to 5800 Mg ha−1. Stem biomass estimates ranged from 3000 to 5200 Mg ha−1. Stem biomass declined 7% over the study interval. Biomass dynamics were patchy, with marked declines in recent tree-fall patches <0.05 ha in size. Larger tree-fall patches approaching 0.2 ha in size were observed outside the study plot. Our estimates of ANPP ranged from 6 to 14 Mg ha−1yr−1. Estimates of 7 to 10 Mg ha−1yr−1 were considered to be relatively accurate. Thus, our estimates based on long-term data corroborated the findings of earlier short-term studies. ANPP of old, pure stands of Sequoia was not above average for temperate forests. Even though production was potentially high on a per stem basis, it was moderate at the stand level. We obtained values of 797 m3 ha−1 and 262 Mg ha−1 for coarse woody detritus volume and mass, respectively. Fine woody detritus volume and mass were estimated at 16 m3 ha−1 and 5 Mg ha−1, respectively. Standing dead trees (or snags) comprised 7% of the total coarse detritus volume and 8% of the total mass. Coarse detritus input averaged 5.7 to 6.9 Mg ha−1yr−1. Assuming steady-state input and pool of coarse detritus, we obtained a decay rate constant of 0.022 to 0.026. The old-growth stand of Sequoia studied had extremely high biomass, but ANPP was moderate and the amount of woody detritus was not exceptionally large. Biomass accretion and loss were not rapid in this stand partly because of the slow population dynamics and low canopy turnover rate of Sequoia at the old-growth stage. Nomenclature: Hickman (1993).  相似文献   

20.
Abstract. We compared the species composition and species density of vascular plants in the understorey vegetation of boreal forest between Picea mariana (Black spruce) and Populus tremuloides (Trembling aspen) stands in British Columbia, Canada, and related differences in species composition and species density between the two forest types to dominant canopy tree species as well as a wide variety of environmental factors. We analysed 231 stands, distributed in three different climatic regions representing drier, wetter, and milder variations of montane boreal climate. Of these stands 118 were dominated by P. mariana and 113 by P. tremuloides. P. tremuloides stands had higher species density than P. mariana stands in all climatic regions, but species density of each dominance type varied among climatic regions. The floristic composition of the understorey vegetation was markedly different for P. mariana and P. tremuloides dominated stands. A detailed study on the effect of canopy dominance and local environmental factors on the understorey vegetation of the boreal forest was conducted using 88 stands from one of the three climatic regions. Using a combination of ordination and variation partitioning by constrained ordination we demonstrated a small but unique effect of canopy dominance type on the understorey vegetation, while a larger amount of compositional variation was shared with other factors. Our results accord with a scenario in which differences in primary environmental factors and humus form properties, the latter accentuated by the canopy dominants themselves, are the most important causes of higher species density in P. tremuloides stands than in P. mariana stands, as well as differences in species composition among the two canopy dominance types. Processes and time scales involved in the small but significant direct and indirect effects of the canopy dominant on understo‐ rey species composition are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号